Results 1  10
of
3,475
A Method for Obtaining Digital Signatures and PublicKey Cryptosystems
, 1978
"... ..."
(Show Context)
How to leak a secret
 PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON THE THEORY AND APPLICATION OF CRYPTOLOGY AND INFORMATION SECURITY: ADVANCES IN CRYPTOLOGY
, 2001
"... In this paper we formalize the notion of a ring signature, which makes it possible to specify a set of possible signers without revealing which member actually produced the signature. Unlike group signatures, ring signatures have no group managers, no setup procedures, no revocation procedures, and ..."
Abstract

Cited by 2508 (4 self)
 Add to MetaCart
In this paper we formalize the notion of a ring signature, which makes it possible to specify a set of possible signers without revealing which member actually produced the signature. Unlike group signatures, ring signatures have no group managers, no setup procedures, no revocation procedures, and no coordination: any user can choose any set of possible signers that includes himself, and sign any message by using his secret key and the others ’ public keys, without getting their approval or assistance. Ring signatures provide an elegant way to leak authoritative secrets in an anonymous way, to sign casual email in a way which can only be verified by its intended recipient, and to solve other problems in multiparty computations. The main contribution of this paper is a new construction of such signatures which is unconditionally signerambiguous, provably secure in the random oracle model, and exceptionally efficient: adding each ring member increases the cost of signing or verifying by a single modular multiplication and a single symmetric encryption.
Security Architecture for the Internet Protocol
 RFC 1825
, 1995
"... ContentType: text/plain ..."
(Show Context)
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1643 (75 self)
 Add to MetaCart
We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including encryption, signatures, and zeroknowledge proofs.
The Byzantine Generals Problem
 ACM Transactions on Programming Languages and Systems
, 1982
"... Reliable computer systems must handle malfunctioning components that give conflicting information to different parts of the system. This situation can be expressed abstractly in terms of a group of generals of the Byzantine army camped with their troops around an enemy city. Communicating only by me ..."
Abstract

Cited by 1566 (5 self)
 Add to MetaCart
(Show Context)
Reliable computer systems must handle malfunctioning components that give conflicting information to different parts of the system. This situation can be expressed abstractly in terms of a group of generals of the Byzantine army camped with their troops around an enemy city. Communicating only by messenger, the generals must agree upon a common battle plan. However, one of more of them may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is solvable if and only if more than twothirds of the generals are loyal; so a single traitor can confound two loyal generals. With unforgeable written messages, the problem is solvable for any number of generals and possible traitors. Applications of the solutions to reliable computer systems are then discussed.
Untraceable electronic mail, return addresses, and digital pseudonyms
 COMMUNICATIONS OF THE ACM
, 1981
"... ..."
A public key cryptosystem and a signature scheme based on discrete logarithms
 Adv. in Cryptology, SpringerVerlag
, 1985
"... AbstractA new signature scheme is proposed, together with an implementation of the DiffieHellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields. I. ..."
Abstract

Cited by 1520 (0 self)
 Add to MetaCart
AbstractA new signature scheme is proposed, together with an implementation of the DiffieHellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields. I.
On the Security of Public Key Protocols
, 1983
"... Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however, that an impr ..."
Abstract

Cited by 1372 (0 self)
 Add to MetaCart
Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however, that an improperly designed protocol could be vulnerable to an active saboteur, one who may impersonate another user or alter the message being transmitted. Several models are formulated in which the security of protocols can be discussed precisely. Algorithms and characterizations that can be used to determine protocol security in these models are given.
SPINS: Security Protocols for Sensor Networks
, 2001
"... As sensor networks edge closer towards widespread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. We design a suite of security building blocks that are optimized ..."
Abstract

Cited by 1049 (31 self)
 Add to MetaCart
As sensor networks edge closer towards widespread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. We design a suite of security building blocks that are optimized for resourceconstrained environments and wireless communication. SPINS has two secure building blocks: SNEP and TESLA. SNEP provides the following important baseline security primitives: Data con£dentiality, twoparty data authentication, and data freshness. A particularly hard problem is to provide efficient broadcast authentication, which is an important mechanism for sensor networks. TESLA is a new protocol which provides authenticated broadcast for severely resourceconstrained environments. We implemented the above protocols, and show that they are practical even on minimalistic hardware: The performance of the protocol suite easily matches the data rate of our network. Additionally, we demonstrate that the suite can be used for building higher level protocols.
Publickey cryptosystems based on composite degree residuosity classes
 IN ADVANCES IN CRYPTOLOGY — EUROCRYPT 1999
, 1999
"... This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to publickey cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes: a trapdoor permutation and two homomorphic probabilist ..."
Abstract

Cited by 991 (4 self)
 Add to MetaCart
This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to publickey cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes: a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA. Our cryptosystems, based on usual modular arithmetics, are provably secure under appropriate assumptions in the standard model.