Results 1 - 10
of
217
Multicast Routing in Datagram Internetworks and Extended LANs
- ACM Transactions on Computer Systems
, 1990
"... Multicasting, the transmission of a packet to a group of hosts, is an important service for improving the efficiency and robustness of distributed systems and applications. Although multicast capability is available and widely used in local area networks, when those LANs are interconnected by store- ..."
Abstract
-
Cited by 1074 (5 self)
- Add to MetaCart
(Show Context)
Multicasting, the transmission of a packet to a group of hosts, is an important service for improving the efficiency and robustness of distributed systems and applications. Although multicast capability is available and widely used in local area networks, when those LANs are interconnected by store-and-forward routers, the multicast service is usually not offered across the resulting internetwork. To address this limitation, we specify extensions to two common internetwork routing algorithms-distance-vector routing and link-state routing-to support low-delay datagram multicasting beyond a single LAN. We also describe modifications to the single-spanning-tree routing algorithm commonly used by link-layer bridges, to reduce the costs of multicasting in large extended LANs. Finally, we discuss how the use of multicast scope control and hierarchical multicast routing allows the multicast service to scale up to large internetworks.
SCRIBE: A large-scale and decentralized application-level multicast infrastructure
- IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC
, 2002
"... This paper presents Scribe, a scalable application-level multicast infrastructure. Scribe supports large numbers of groups, with a potentially large number of members per group. Scribe is built on top of Pastry, a generic peer-to-peer object location and routing substrate overlayed on the Internet, ..."
Abstract
-
Cited by 658 (29 self)
- Add to MetaCart
(Show Context)
This paper presents Scribe, a scalable application-level multicast infrastructure. Scribe supports large numbers of groups, with a potentially large number of members per group. Scribe is built on top of Pastry, a generic peer-to-peer object location and routing substrate overlayed on the Internet, and leverages Pastry's reliability, self-organization, and locality properties. Pastry is used to create and manage groups and to build efficient multicast trees for the dissemination of messages to each group. Scribe provides best-effort reliability guarantees, but we outline how an application can extend Scribe to provide stronger reliability. Simulation results, based on a realistic network topology model, show that Scribe scales across a wide range of groups and group sizes. Also, it balances the load on the nodes while achieving acceptable delay and link stress when compared to IP multicast.
SplitStream: High-Bandwidth Multicast in Cooperative Environments
- SOSP '03
, 2003
"... In tree-based multicast systems, a relatively small number of interior nodes carry the load of forwarding multicast messages. This works well when the interior nodes are highly available, d d cated infrastructure routers but it poses a problem for application-level multicast in peer-to-peer systems. ..."
Abstract
-
Cited by 578 (17 self)
- Add to MetaCart
In tree-based multicast systems, a relatively small number of interior nodes carry the load of forwarding multicast messages. This works well when the interior nodes are highly available, d d cated infrastructure routers but it poses a problem for application-level multicast in peer-to-peer systems. SplitStreamadV esses this problem by striping the content across a forest of interior-nodno# sjoint multicast trees that d stributes the forward ng load among all participating peers. For example, it is possible to construct efficient SplitStream forests in which each peer contributes only as much forwarding bandH d th as it receives. Furthermore, with appropriate content encod ngs, SplitStream is highly robust to failures because a nod e fai ure causes the oss of a single stripe on average. We present thed#' gnand implementation of SplitStream and show experimental results obtained on an Internet testbed and via large-scale network simulation. The results show that SplitStreamd istributes the forward ing load among all peers and can accommod'9 peers with different band0 d capacities while imposing low overhead for forest constructionand maintenance.
An Architecture for Wide-Area Multicast Routing
"... Existing multicast routing mechanisms were intended for use within regions where a group is widely represented or bandwidth is universally plentiful. When group members, and senders to those group members, are distributed sparsely across a wide area, these schemes are not efficient; data packets or ..."
Abstract
-
Cited by 534 (22 self)
- Add to MetaCart
Existing multicast routing mechanisms were intended for use within regions where a group is widely represented or bandwidth is universally plentiful. When group members, and senders to those group members, are distributed sparsely across a wide area, these schemes are not efficient; data packets or membership report information are occasionally sent over many links that do not lead to receivers or senders, respectively. We have developed a multicast routing architecture that efficiently establishes distribution trees across wide area internets, where many groups will be sparsely represented. Efficiency is measured in terms of the state, control message processing, and data packet processing, required across the entire network in order to deliver data packets to the members of the group. Our Protocol Independent Multicast (PIM) architecture: (a) maintains the traditional IP multicast service model of receiver-initiated membership; (b) can be configured to adapt to different multicast group and network characteristics; (c) is not dependent on a specific unicast routing protocol; and (d) uses soft-state mechanisms to adapt to underlying network conditions and group dynamics. The robustness, flexibility, and scaling properties of this architecture make it well suited to large heterogeneous inter-networks.
SCRIBE: The design of a large-scale event notification infrastructure
- In Networked Group Communication
, 2001
"... This paper presents Scribe, a large-scale event notification infrastructure for topic-based publish-subscribe applications. Scribe supports large numbers of topics, with a potentially large number of subscribers per topic. Scribe is built on top of Pastry, a generic peer-to-peer object location a ..."
Abstract
-
Cited by 344 (12 self)
- Add to MetaCart
(Show Context)
This paper presents Scribe, a large-scale event notification infrastructure for topic-based publish-subscribe applications. Scribe supports large numbers of topics, with a potentially large number of subscribers per topic. Scribe is built on top of Pastry, a generic peer-to-peer object location and routing substrate overlayed on the Internet, and leverages Pastry's reliability, self-organization and locality properties. Pastry is used to create a topic (group) and to build an efficient multicast tree for the dissemination of events to the topic's subscribers (members). Scribe provides weak reliability guarantees, but we outline how an application can extend Scribe to provide stronger ones.
Hermes: A Distributed Event-Based Middleware Architecture
, 2002
"... In this paper, we argue that there is a need for an event-based middleware to build large-scale distributed systems. Existing publish/subscribe systems still have limitations compared to invocation-based middlewares. We introduce Hermes, a novel event-based distributed middleware architecture that f ..."
Abstract
-
Cited by 231 (14 self)
- Add to MetaCart
(Show Context)
In this paper, we argue that there is a need for an event-based middleware to build large-scale distributed systems. Existing publish/subscribe systems still have limitations compared to invocation-based middlewares. We introduce Hermes, a novel event-based distributed middleware architecture that follows a type- and attribute-based publish/subscribe model. It centres around the notion of an event type and supports features commonly known from object-oriented languages like type hierarchies and supertype subscriptions. A scalable routing algorithm using an overlay routing network is presented that avoids global broadcasts by creating rendezvous nodes. Fault-tolerance mechanisms that can cope with different kinds' of failures in the middleware are integrated with the routing algorithm resulting in a scalable and robust system.
The Core-Assisted Mesh Protocol
"... The Core-Assisted Mesh Protocol (CAMP) is introduced for multicast routing in ad-hoc networks. CAMP generalizes the notion of core-based trees introduced for internet multicasting into multicast meshes that have much richer connectivity than trees. A shared multicast mesh is defined for each multica ..."
Abstract
-
Cited by 226 (4 self)
- Add to MetaCart
The Core-Assisted Mesh Protocol (CAMP) is introduced for multicast routing in ad-hoc networks. CAMP generalizes the notion of core-based trees introduced for internet multicasting into multicast meshes that have much richer connectivity than trees. A shared multicast mesh is defined for each multicast group; the main goal of using such meshes is to maintain the connectivity of multicast groups even while network routers move frequently. CAMP consists of the maintenance of multicast meshes and loop-free packet forwarding over such meshes. Within the multicast mesh of a group, packets from any source in the group are forwarded along the reverse shortest path to the source, just as in traditional multicast protocols based on source-based trees. CAMP guarantees that, within a finite time, every receiver of a multicast group has a reverse shortest path to each source of the multicast group. Multicast packets for a group are forwarded along the shortest paths from sources to receivers defined within the group's mesh. CAMP uses cores only to limit the traffic needed for a router to join a multicast group; the failure of cores does not stop packet forwarding or the process of maintaining the multicast meshes.
IP Multicast Channels: Express Support for Large-scale Single-source Applications
, 1999
"... In the IP multicast model, a set of hosts can be aggregated into a group of hosts with one address, to which any host can send. However, Internet TV, distance learning, file distribution and other emerging large-scale multicast applications strain the current realization of this model, which lacks a ..."
Abstract
-
Cited by 201 (4 self)
- Add to MetaCart
In the IP multicast model, a set of hosts can be aggregated into a group of hosts with one address, to which any host can send. However, Internet TV, distance learning, file distribution and other emerging large-scale multicast applications strain the current realization of this model, which lacks a basis for charging, lacks access control, and is difficult to scale. This paper proposes an extension to IP multicast to support the channel model of multicast and describes a specific realization called EXPlicitly REquested SingleSource (EXPRESS) multicast. In this model, a multicast channel has exactly one explicitly designated source, and zero or more channel subscribers. A single protocol supports both channel subscription and efficient collection of channel information such as subscriber count. We argue that EXPRESS addresses the aforementioned problems, justifying this multicast service model in the Internet.
SplitStream: High-bandwidth content distribution in cooperative environments
, 2003
"... In tree-based multicast systems, a relatively small number of interior nodes carry the load of forwarding multicast messages. This works well when the interior nodes are dedicated infrastructure routers. But it poses a problem in cooperative application-level multicast, where participants expect to ..."
Abstract
-
Cited by 199 (4 self)
- Add to MetaCart
(Show Context)
In tree-based multicast systems, a relatively small number of interior nodes carry the load of forwarding multicast messages. This works well when the interior nodes are dedicated infrastructure routers. But it poses a problem in cooperative application-level multicast, where participants expect to contribute resources proportional to the benefit they derive from using the system. Moreover, many participants may not have the network capacity and availability required of an interior node in high-bandwidth multicast applications. SplitStream is a high-bandwidth content distribution system based on application-level multicast. It distributes the forwarding load among all the participants, and is able to accommodate participating nodes with different bandwidth capacities. We sketch the design of SplitStream and present some preliminary performance results.