Results 1  10
of
524
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 873 (26 self)
 Add to MetaCart
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfectly recover most lowrank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys m ≥ C n 1.2 r log n for some positive numerical constant C, then with very high probability, most n × n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.
Similarity search in high dimensions via hashing
, 1999
"... The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image dat ..."
Abstract

Cited by 641 (10 self)
 Add to MetaCart
The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image databases, document collections, timeseries databases, and genome databases. Unfortunately, all known techniques for solving this problem fall prey to the \curse of dimensionality. &quot; That is, the data structures scale poorly with data dimensionality; in fact, if the number of dimensions exceeds 10 to 20, searching in kd trees and related structures involves the inspection of a large fraction of the database, thereby doing no better than bruteforce linear search. It has been suggested that since the selection of features and the choice of a distance metric in typical applications is rather heuristic, determining an approximate nearest neighbor should su ce for most practical purposes. In this paper, we examine a novel scheme for approximate similarity search based on hashing. The basic idea is to hash the points
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization,”
 SIAM Review,
, 2010
"... Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and col ..."
Abstract

Cited by 562 (20 self)
 Add to MetaCart
(Show Context)
Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NPhard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is Ω(r(m + n) log mn), where m, n are the dimensions of the matrix, and r is its rank. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this preexisting concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract

Cited by 506 (0 self)
 Add to MetaCart
(Show Context)
We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the family of radial basis kernels. It can also be used to define kernels in the form of joint Gibbs probability distributions. Kernels can be built from hidden Markov random elds, generalized regular expressions, pairHMMs, or ANOVA decompositions. Uses of the method lead to open problems involving the theory of infinitely divisible positive definite functions. Fundamentals of this theory and the theory of reproducing kernel Hilbert spaces are reviewed and applied in establishing the validity of the method.
Nearoptimal hashing algorithms for approximate nearest neighbor in high dimensions
, 2008
"... In this article, we give an overview of efficient algorithms for the approximate and exact nearest neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given a new query object, one can quickly return the dataset object that is most similar to the query. The ..."
Abstract

Cited by 457 (7 self)
 Add to MetaCart
In this article, we give an overview of efficient algorithms for the approximate and exact nearest neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given a new query object, one can quickly return the dataset object that is most similar to the query. The problem is of significant interest in a wide variety of areas.
Multicommodity maxflow mincut theorems and their use in designing approximation algorithms
 J. ACM
, 1999
"... In this paper, we establish maxflow mincut theorems for several important classes of multicommodity flow problems. In particular, we show that for any nnode multicommodity flow problem with uniform demands, the maxflow for the problem is within an O(log n) factor of the upper bound implied by ..."
Abstract

Cited by 357 (6 self)
 Add to MetaCart
In this paper, we establish maxflow mincut theorems for several important classes of multicommodity flow problems. In particular, we show that for any nnode multicommodity flow problem with uniform demands, the maxflow for the problem is within an O(log n) factor of the upper bound implied by the mincut. The result (which is existentially optimal) establishes an important analogue of the famous 1commodity maxflow mincut theorem for problems with multiple commodities. The result also has substantial applications to the field of approximation algorithms. For example, we use the flow result to design the first polynomialtime (polylog ntimesoptimal) approximation algorithms for wellknown NPhard optimization problems such as graph partitioning, mincut linear arrangement, crossing number, VLSI layout, and minimum feedback arc set. Applications of the flow results to path routing problems, network reconfiguration, communication in distributed networks, scientific computing and rapidly mixing Markov chains are also described in the paper.
Probabilistic Approximation of Metric Spaces and its Algorithmic Applications
 In 37th Annual Symposium on Foundations of Computer Science
, 1996
"... The goal of approximating metric spaces by more simple metric spaces has led to the notion of graph spanners [PU89, PS89] and to lowdistortion embeddings in lowdimensional spaces [LLR94], having many algorithmic applications. This paper provides a novel technique for the analysis of randomized ..."
Abstract

Cited by 351 (32 self)
 Add to MetaCart
(Show Context)
The goal of approximating metric spaces by more simple metric spaces has led to the notion of graph spanners [PU89, PS89] and to lowdistortion embeddings in lowdimensional spaces [LLR94], having many algorithmic applications. This paper provides a novel technique for the analysis of randomized algorithms for optimization problems on metric spaces, by relating the randomized performance ratio for any metric space to the randomized performance ratio for a set of "simple" metric spaces. We define a notion of a set of metric spaces that probabilisticallyapproximates another metric space. We prove that any metric space can be probabilisticallyapproximated by hierarchically wellseparated trees (HST) with a polylogarithmic distortion. These metric spaces are "simple" as being: (1) tree metrics. (2) natural for applying a divideandconquer algorithmic approach. The technique presented is of particular interest in the context of online computation. A large number of online al...
Stable Distributions, Pseudorandom Generators, Embeddings and Data Stream Computation
, 2000
"... In this paper we show several results obtained by combining the use of stable distributions with pseudorandom generators for bounded space. In particular: ffl we show how to maintain (using only O(log n=ffl 2 ) words of storage) a sketch C(p) of a point p 2 l n 1 under dynamic updates of its coo ..."
Abstract

Cited by 324 (13 self)
 Add to MetaCart
In this paper we show several results obtained by combining the use of stable distributions with pseudorandom generators for bounded space. In particular: ffl we show how to maintain (using only O(log n=ffl 2 ) words of storage) a sketch C(p) of a point p 2 l n 1 under dynamic updates of its coordinates, such that given sketches C(p) and C(q) one can estimate jp \Gamma qj 1 up to a factor of (1 + ffl) with large probability. This solves the main open problem of [10]. ffl we obtain another sketch function C 0 which maps l n 1 into a normed space l m 1 (as opposed to C), such that m = m(n) is much smaller than n; to our knowledge this is the first dimensionality reduction lemma for l 1 norm ffl we give an explicit embedding of l n 2 into l n O(log n) 1 with distortion (1 + 1=n \Theta(1) ) and a nonconstructive embedding of l n 2 into l O(n) 1 with distortion (1 + ffl) such that the embedding can be represented using only O(n log 2 n) bits (as opposed to at least...