Results 1  10
of
11,682
A Systematic Comparison of Various Statistical Alignment Models
 COMPUTATIONAL LINGUISTICS
, 2003
"... ..."
Combining labeled and unlabeled data with cotraining
, 1998
"... We consider the problem of using a large unlabeled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the ta ..."
Abstract

Cited by 1614 (34 self)
 Add to MetaCart
(Show Context)
We consider the problem of using a large unlabeled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the task of learning to classify web pages. For example, the description of a web page can be partitioned into the words occurring on that page, and the words occurring in hyperlinks that point to that page. We assume that either view of the example would be su cient for learning if we had enough labeled data, but our goal is to use both views together to allow inexpensive unlabeled data to augment amuch smaller set of labeled examples. Speci cally, the presence of two distinct views of each example suggests strategies in which two learning algorithms are trained separately on each view, and then each algorithm's predictions on new unlabeled examples are used to enlarge the training set of the other. Our goal in this paper is to provide a PACstyle analysis for this setting, and, more broadly, a PACstyle framework for the general problem of learning from both labeled and unlabeled data. We also provide empirical results on real webpage data indicating that this use of unlabeled examples can lead to signi cant improvement of hypotheses in practice. As part of our analysis, we provide new re
The Mathematics of Statistical Machine Translation: Parameter Estimation
 COMPUTATIONAL LINGUISTICS
, 1993
"... ..."
Empirical Analysis of Predictive Algorithm for Collaborative Filtering
 Proceedings of the 14 th Conference on Uncertainty in Artificial Intelligence
, 1998
"... 1 ..."
A Maximum Entropy approach to Natural Language Processing
 COMPUTATIONAL LINGUISTICS
, 1996
"... The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper we des ..."
Abstract

Cited by 1341 (5 self)
 Add to MetaCart
The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper we describe a method for statistical modeling based on maximum entropy. We present a maximumlikelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently, using as examples several problems in natural language processing.
Algorithms for Nonnegative Matrix Factorization
 In NIPS
, 2001
"... Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minim ..."
Abstract

Cited by 1230 (5 self)
 Add to MetaCart
(Show Context)
Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minimize the conventional least squares error while the other minimizes the generalized KullbackLeibler divergence. The monotonic convergence of both algorithms can be proven using an auxiliary function analogous to that used for proving convergence of the ExpectationMaximization algorithm. The algorithms can also be interpreted as diagonally rescaled gradient descent, where the rescaling factor is optimally chosen to ensure convergence.
Probabilistic Latent Semantic Indexing
, 1999
"... Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized ..."
Abstract

Cited by 1207 (11 self)
 Add to MetaCart
Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized model is able to deal with domainspecific synonymy as well as with polysemous words. In contrast to standard Latent Semantic Indexing (LSI) by Singular Value Decomposition, the probabilistic variant has a solid statistical foundation and defines a proper generative data model. Retrieval experiments on a number of test collections indicate substantial performance gains over direct term matching methodsaswell as over LSI. In particular, the combination of models with different dimensionalities has proven to be advantageous.
Learning Bayesian networks: The combination of knowledge and statistical data
 Machine Learning
, 1995
"... We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simpl ..."
Abstract

Cited by 1142 (36 self)
 Add to MetaCart
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simplify the encoding of a user’s prior knowledge. In particular, a user can express his knowledge—for the most part—as a single prior Bayesian network for the domain. 1