Results 1  10
of
170
The Dantzig selector: statistical estimation when p is much larger than n
, 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract

Cited by 879 (14 self)
 Add to MetaCart
(Show Context)
In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ p, and the zi’s are i.i.d. N(0, σ 2). Is it possible to estimate x reliably based on the noisy data y? To estimate x, we introduce a new estimator—we call the Dantzig selector—which is solution to the ℓ1regularization problem min ˜x∈R p ‖˜x‖ℓ1 subject to ‖A T r‖ℓ ∞ ≤ (1 + t −1) √ 2 log p · σ, where r is the residual vector y − A˜x and t is a positive scalar. We show that if A obeys a uniform uncertainty principle (with unitnormed columns) and if the true parameter vector x is sufficiently sparse (which here roughly guarantees that the model is identifiable), then with very large probability ‖ˆx − x ‖ 2 ℓ2 ≤ C2 ( · 2 log p · σ 2 + ∑ min(x 2 i, σ 2) Our results are nonasymptotic and we give values for the constant C. In short, our estimator achieves a loss within a logarithmic factor of the ideal mean squared error one would achieve with an oracle which would supply perfect information about which coordinates are nonzero, and which were above the noise level. In multivariate regression and from a model selection viewpoint, our result says that it is possible nearly to select the best subset of variables, by solving a very simple convex program, which in fact can easily be recast as a convenient linear program (LP).
SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR
 SUBMITTED TO THE ANNALS OF STATISTICS
, 2007
"... We exhibit an approximate equivalence between the Lasso estimator and Dantzig selector. For both methods we derive parallel oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the ℓp estimation loss for 1 ≤ p ≤ 2 in the linear model when th ..."
Abstract

Cited by 472 (11 self)
 Add to MetaCart
We exhibit an approximate equivalence between the Lasso estimator and Dantzig selector. For both methods we derive parallel oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the ℓp estimation loss for 1 ≤ p ≤ 2 in the linear model when the number of variables can be much larger than the sample size.
A unified framework for highdimensional analysis of Mestimators with decomposable regularizers
"... ..."
Nearly unbiased variable selection under minimax concave penalty
 Annals of Statistics
, 2010
"... ar ..."
On the conditions used to prove oracle results for the Lasso
 Electron. J. Stat
"... Abstract: Oracle inequalities and variable selection properties for the Lasso in linear models have been established under a variety of different assumptions on the design matrix. We show in this paper how the different conditions and concepts relate to each other. The restricted eigenvalue conditio ..."
Abstract

Cited by 103 (5 self)
 Add to MetaCart
(Show Context)
Abstract: Oracle inequalities and variable selection properties for the Lasso in linear models have been established under a variety of different assumptions on the design matrix. We show in this paper how the different conditions and concepts relate to each other. The restricted eigenvalue condition [2] or the slightly weaker compatibility condition [18] are sufficient for oracle results. We argue that both these conditions allow for a fairly general class of design matrices. Hence, optimality of the Lasso for prediction and estimation holds for more general situations than what it appears from coherence [5, 4] or restricted isometry [10] assumptions.
Adaptive forwardbackward greedy algorithm for learning sparse representations
 IEEE Trans. Inform. Theory
, 2011
"... Consider linear prediction models where the target function is a sparse linear combination of a set of basis functions. We are interested in the problem of identifying those basis functions with nonzero coefficients and reconstructing the target function from noisy observations. Two heuristics that ..."
Abstract

Cited by 101 (9 self)
 Add to MetaCart
(Show Context)
Consider linear prediction models where the target function is a sparse linear combination of a set of basis functions. We are interested in the problem of identifying those basis functions with nonzero coefficients and reconstructing the target function from noisy observations. Two heuristics that are widely used in practice are forward and backward greedy algorithms. First, we show that neither idea is adequate. Second, we propose a novel combination that is based on the forward greedy algorithm but takes backward steps adaptively whenever beneficial. We prove strong theoretical results showing that this procedure is effective in learning sparse representations. Experimental results support our theory. 1
Some sharp performance bounds for least squares regression with L1 regularization
 Rutgers Univ. MODEL SELECTION 35 Applied and Computational Mathematics California Institute of Technology 300 Firestone, Mail Code 21750 Pasadena, California 91125 Email: emmanuel@acm.caltech.edu plan@acm.caltech.edu
, 2009
"... We derive sharp performance bounds for least squares regression with L1 regularization from parameter estimation accuracy and feature selection quality perspectives. The main result proved for L1 regularization extends a similar result in [Ann. Statist. 35 (2007) 2313–2351] for the Dantzig selector. ..."
Abstract

Cited by 92 (7 self)
 Add to MetaCart
We derive sharp performance bounds for least squares regression with L1 regularization from parameter estimation accuracy and feature selection quality perspectives. The main result proved for L1 regularization extends a similar result in [Ann. Statist. 35 (2007) 2313–2351] for the Dantzig selector. It gives an affirmative answer to an open question in [Ann. Statist. 35 (2007) 2358–2364]. Moreover, the result leads to an extended view of feature selection that allows less restrictive conditions than some recent work. Based on the theoretical insights, a novel twostage L1regularization procedure with selective penalization is analyzed. It is shown that if the target parameter vector can be decomposed as the sum of a sparse parameter vector with large coefficients and another less sparse vector with relatively small coefficients, then the twostage procedure can lead to improved performance.
Supnorm convergence rate and sign concentration property of Lasso and Dantzig estimators
 ELECTRONIC JOURNAL OF STATISTICS
, 2008
"... ..."
Nearideal model selection by ℓ1 minimization
, 2008
"... We consider the fundamental problem of estimating the mean of a vector y = Xβ + z, where X is an n × p design matrix in which one can have far more variables than observations and z is a stochastic error term—the socalled ‘p> n ’ setup. When β is sparse, or more generally, when there is a sparse ..."
Abstract

Cited by 84 (4 self)
 Add to MetaCart
(Show Context)
We consider the fundamental problem of estimating the mean of a vector y = Xβ + z, where X is an n × p design matrix in which one can have far more variables than observations and z is a stochastic error term—the socalled ‘p> n ’ setup. When β is sparse, or more generally, when there is a sparse subset of covariates providing a close approximation to the unknown mean vector, we ask whether or not it is possible to accurately estimate Xβ using a computationally tractable algorithm. We show that in a surprisingly wide range of situations, the lasso happens to nearly select the best subset of variables. Quantitatively speaking, we prove that solving a simple quadratic program achieves a squared error within a logarithmic factor of the ideal mean squared error one would achieve with an oracle supplying perfect information about which variables should be included in the model and which variables should not. Interestingly, our results describe the average performance of the lasso; that is, the performance one can expect in an vast majority of cases where Xβ is a sparse or nearly sparse superposition of variables, but not in all cases. Our results are nonasymptotic and widely applicable since they simply require that pairs of predictor variables are not too collinear.
Highdimensional additive modeling
 Annals of Statistics
"... We propose a new sparsitysmoothness penalty for highdimensional generalized additive models. The combination of sparsity and smoothness is crucial for mathematical theory as well as performance for finitesample data. We present a computationally efficient algorithm, with provable numerical conver ..."
Abstract

Cited by 78 (3 self)
 Add to MetaCart
(Show Context)
We propose a new sparsitysmoothness penalty for highdimensional generalized additive models. The combination of sparsity and smoothness is crucial for mathematical theory as well as performance for finitesample data. We present a computationally efficient algorithm, with provable numerical convergence properties, for optimizing the penalized likelihood. Furthermore, we provide oracle results which yield asymptotic optimality of our estimator for highdimensional but sparse additive models. Finally, an adaptive version of our sparsitysmoothness penalized approach yields large additional performance gains. 1