Results 1  10
of
880
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1441 (15 self)
 Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired resolution of the image, i.e. the number of pixels in the image. This paper surveys an emerging theory which goes by the name of “compressive sampling” or “compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps surprisingly, it is possible to reconstruct images or signals of scientific interest accurately and sometimes even exactly from a number of samples which is far smaller than the desired resolution of the image/signal, e.g. the number of pixels in the image. It is believed that compressive sampling has far reaching implications. For example, it suggests the possibility of new data acquisition protocols that translate analog information into digital form with fewer sensors than what was considered necessary. This new sampling theory may come to underlie procedures for sampling and compressing data simultaneously. In this short survey, we provide some of the key mathematical insights underlying this new theory, and explain some of the interactions between compressive sampling and other fields such as statistics, information theory, coding theory, and theoretical computer science.
Regularization paths for generalized linear models via coordinate descent
, 2009
"... We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic ..."
Abstract

Cited by 724 (15 self)
 Add to MetaCart
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.
Compressive sensing
 IEEE Signal Processing Mag
, 2007
"... The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too m ..."
Abstract

Cited by 696 (62 self)
 Add to MetaCart
(Show Context)
The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too many samples and must compress in order to store or transmit them. In other applications, including imaging systems (medical scanners, radars) and highspeed analogtodigital converters, increasing the sampling rate or density beyond the current stateoftheart is very expensive. In this lecture, we will learn about a new technique that tackles these issues using compressive sensing [1, 2]. We will replace the conventional sampling and reconstruction operations with a more general linear measurement scheme coupled with an optimization in order to acquire certain kinds of signals at a rate significantly below Nyquist. 2
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 555 (22 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Offtheshelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple firstorder and easytoimplement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {X k, Y k} and at each step, mainly performs a softthresholding operation on the singular values of the matrix Y k. There are two remarkable features making this attractive for lowrank matrix completion problems. The first is that the softthresholding operation is applied to a sparse matrix; the second is that the rank of the iterates {X k} is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
, 2007
"... Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a spa ..."
Abstract

Cited by 539 (17 self)
 Add to MetaCart
Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a sparsenessinducing (ℓ1) regularization term.Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution, and compressed sensing are a few wellknown examples of this approach. This paper proposes gradient projection (GP) algorithms for the boundconstrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the BarzilaiBorwein method. Computational experiments show that these GP approaches perform well in a wide range of applications, often being significantly faster (in terms of computation time) than competing methods. Although the performance of GP methods tends to degrade as the regularization term is deemphasized, we show how they can be embedded in a continuation scheme to recover their efficient practical performance.
SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR
 SUBMITTED TO THE ANNALS OF STATISTICS
, 2007
"... We exhibit an approximate equivalence between the Lasso estimator and Dantzig selector. For both methods we derive parallel oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the ℓp estimation loss for 1 ≤ p ≤ 2 in the linear model when th ..."
Abstract

Cited by 472 (11 self)
 Add to MetaCart
(Show Context)
We exhibit an approximate equivalence between the Lasso estimator and Dantzig selector. For both methods we derive parallel oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the ℓp estimation loss for 1 ≤ p ≤ 2 in the linear model when the number of variables can be much larger than the sample size.
Sparse Reconstruction by Separable Approximation
, 2007
"... Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution and reconstruction, and compressed sensing ..."
Abstract

Cited by 373 (38 self)
 Add to MetaCart
Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution and reconstruction, and compressed sensing (CS) are a few wellknown areas in which problems of this type appear. One standard approach is to minimize an objective function that includes a quadratic (ℓ2) error term added to a sparsityinducing (usually ℓ1) regularizer. We present an algorithmic framework for the more general problem of minimizing the sum of a smooth convex function and a nonsmooth, possibly nonconvex, sparsityinducing function. We propose iterative methods in which each step is an optimization subproblem involving a separable quadratic term (diagonal Hessian) plus the original sparsityinducing term. Our approach is suitable for cases in which this subproblem can be solved much more rapidly than the original problem. In addition to solving the standard ℓ2 − ℓ1 case, our approach handles other problems, e.g., ℓp regularizers with p � = 1, or groupseparable (GS) regularizers. Experiments with CS problems show that our approach provides stateoftheart speed for the standard ℓ2 − ℓ1 problem, and is also efficient on problems with GS regularizers. Index Terms — sparse approximation, compressed sensing, optimization, reconstruction.
Sharp thresholds for highdimensional and noisy sparsity recovery using l1constrained quadratic programmming (Lasso)
, 2006
"... ..."
Bayesian Compressive Sensing
, 2007
"... The data of interest are assumed to be represented as Ndimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M ≪ N of basisfunction coefficients associated with B. Compressive sensing ..."
Abstract

Cited by 330 (24 self)
 Add to MetaCart
(Show Context)
The data of interest are assumed to be represented as Ndimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M ≪ N of basisfunction coefficients associated with B. Compressive sensing is a framework whereby one does not measure one of the aforementioned Ndimensional signals directly, but rather a set of related measurements, with the new measurements a linear combination of the original underlying Ndimensional signal. The number of required compressivesensing measurements is typically much smaller than N, offering the potential to simplify the sensing system. Let f denote the unknown underlying Ndimensional signal, and g a vector of compressivesensing measurements, then one may approximate f accurately by utilizing knowledge of the (underdetermined) linear relationship between f and g, in addition to knowledge of the fact that f is compressible in B. In this paper we employ a Bayesian formalism for estimating the underlying signal f based on compressivesensing measurements g. The proposed framework has the following properties: (i) in addition to estimating the underlying signal f, “error bars ” are also estimated, these giving a measure of confidence in the inverted signal; (ii) using knowledge of the error bars, a principled means is provided for determining when a sufficient
Sure independence screening for ultrahigh dimensional feature space
, 2006
"... Variable selection plays an important role in high dimensional statistical modeling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, estimation accuracy and computational cost are two top concerns. In a recent paper, ..."
Abstract

Cited by 283 (26 self)
 Add to MetaCart
Variable selection plays an important role in high dimensional statistical modeling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, estimation accuracy and computational cost are two top concerns. In a recent paper, Candes and Tao (2007) propose the Dantzig selector using L1 regularization and show that it achieves the ideal risk up to a logarithmic factor log p. Their innovative procedure and remarkable result are challenged when the dimensionality is ultra high as the factor log p can be large and their uniform uncertainty principle can fail. Motivated by these concerns, we introduce the concept of sure screening and propose a sure screening method based on a correlation learning, called the Sure Independence Screening (SIS), to reduce dimensionality from high to a moderate scale that is below sample size. In a fairly general asymptotic framework, the SIS is shown to have the sure screening property for even exponentially growing dimensionality. As a methodological extension, an iterative SIS (ISIS) is also proposed to enhance its finite sample performance. With dimension reduced accurately from high to below sample size, variable selection can be improved on both speed and accuracy, and can then be ac