Results 1  10
of
1,835
LIBSVM: a Library for Support Vector Machines
, 2001
"... LIBSVM is a library for support vector machines (SVM). Its goal is to help users can easily use SVM as a tool. In this document, we present all its implementation details. 1 ..."
Abstract

Cited by 6287 (82 self)
 Add to MetaCart
(Show Context)
LIBSVM is a library for support vector machines (SVM). Its goal is to help users can easily use SVM as a tool. In this document, we present all its implementation details. 1
Latent dirichlet allocation
 Journal of Machine Learning Research
, 2003
"... We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a threelevel hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, ..."
Abstract

Cited by 4194 (91 self)
 Add to MetaCart
(Show Context)
We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a threelevel hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model. 1.
Histograms of Oriented Gradients for Human Detection
 In CVPR
, 2005
"... We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly out ..."
Abstract

Cited by 3678 (9 self)
 Add to MetaCart
(Show Context)
We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that finescale gradients, fine orientation binning, relatively coarse spatial binning, and highquality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives nearperfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds. 1
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves stateoftheart results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract

Cited by 1398 (50 self)
 Add to MetaCart
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves stateoftheart results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a marginsensitive approach for datamining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MISVM in terms of latent variables. A latent SVM is semiconvex and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.
Optimizing Search Engines using Clickthrough Data
, 2002
"... This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches ..."
Abstract

Cited by 1250 (23 self)
 Add to MetaCart
This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches to learning retrieval functions from examples exist, they typically require training data generated from relevance judgments by experts. This makes them difficult and expensive to apply. The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the querylog of the search engine in connection with the log of links the users clicked on in the presented ranking. Such clickthrough data is available in abundance and can be recorded at very low cost. Taking a Support Vector Machine (SVM) approach, this paper presents a method for learning retrieval functions. From a theoretical perspective, this method is shown to be wellfounded in a risk minimization framework. Furthermore, it is shown to be feasible even for large sets of queries and features. The theoretical results are verified in a controlled experiment. It shows that the method can effectively adapt the retrieval function of a metasearch engine to a particular group of users, outperforming Google in terms of retrieval quality after only a couple of hundred training examples.
Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
 ADVANCES IN LARGE MARGIN CLASSIFIERS
, 1999
"... The output of a classifier should be a calibrated posterior probability to enable postprocessing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score. Howev ..."
Abstract

Cited by 1041 (0 self)
 Add to MetaCart
(Show Context)
The output of a classifier should be a calibrated posterior probability to enable postprocessing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score. However, training with a maximum likelihood score will produce nonsparse kernel machines. Instead, we train an SVM, then train the parameters of an additional sigmoid function to map the SVM outputs into probabilities. This chapter compares classification error rate and likelihood scores for an SVM plus sigmoid versus a kernel method trained with a regularized likelihood error function. These methods are tested on three dataminingstyle data sets. The SVM+sigmoid yields probabilities of comparable quality to the regularized maximum likelihood kernel method, while still retaining the sparseness of the SVM.
Thumbs up? Sentiment Classification using Machine Learning Techniques
 IN PROCEEDINGS OF EMNLP
, 2002
"... We consider the problem of classifying documents not by topic, but by overall sentiment, e.g., determining whether a review is positive or negative. Using movie reviews as data, we find that standard machine learning techniques definitively outperform humanproduced baselines. However, the three mac ..."
Abstract

Cited by 1028 (7 self)
 Add to MetaCart
We consider the problem of classifying documents not by topic, but by overall sentiment, e.g., determining whether a review is positive or negative. Using movie reviews as data, we find that standard machine learning techniques definitively outperform humanproduced baselines. However, the three machine learning methods we employed (Naive Bayes, maximum entropy classification, and support vector machines) do not perform as well on sentiment classification as on traditional topicbased categorization. We conclude by examining factors that make the sentiment classification problem more challenging. 1
A Comparison of Methods for Multiclass Support Vector Machines
 IEEE TRANS. NEURAL NETWORKS
, 2002
"... Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary class ..."
Abstract

Cited by 935 (22 self)
 Add to MetaCart
Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computationally more expensive to solve multiclass problems, comparisons of these methods using largescale problems have not been seriously conducted. Especially for methods solving multiclass SVM in one step, a much larger optimization problem is required so up to now experiments are limited to small data sets. In this paper we give decomposition implementations for two such “alltogether” methods. We then compare their performance with three methods based on binary classifications: “oneagainstall,” “oneagainstone,” and directed acyclic graph SVM (DAGSVM). Our experiments indicate that the “oneagainstone” and DAG methods are more suitable for practical use than the other methods. Results also show that for large problems methods by considering all data at once in general need fewer support vectors.
Transductive Inference for Text Classification using Support Vector Machines
, 1999
"... This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimiz ..."
Abstract

Cited by 887 (4 self)
 Add to MetaCart
This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimize misclassifications of just those particular examples. The paper presents an analysis of why TSVMs are well suited for text classification. These theoretical findings are supported by experiments on three test collections. The experiments show substantial improvements over inductive methods, especially for small training sets, cutting the number of labeled training examples down to a twentieth on some tasks. This work also proposes an algorithm for training TSVMs efficiently, handling 10,000 examples and more.
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 828 (3 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.