Results 1  10
of
191
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1441 (15 self)
 Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired resolution of the image, i.e. the number of pixels in the image. This paper surveys an emerging theory which goes by the name of “compressive sampling” or “compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps surprisingly, it is possible to reconstruct images or signals of scientific interest accurately and sometimes even exactly from a number of samples which is far smaller than the desired resolution of the image/signal, e.g. the number of pixels in the image. It is believed that compressive sampling has far reaching implications. For example, it suggests the possibility of new data acquisition protocols that translate analog information into digital form with fewer sensors than what was considered necessary. This new sampling theory may come to underlie procedures for sampling and compressing data simultaneously. In this short survey, we provide some of the key mathematical insights underlying this new theory, and explain some of the interactions between compressive sampling and other fields such as statistics, information theory, coding theory, and theoretical computer science.
Compressive sensing
 IEEE Signal Processing Mag
, 2007
"... The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too m ..."
Abstract

Cited by 696 (62 self)
 Add to MetaCart
(Show Context)
The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too many samples and must compress in order to store or transmit them. In other applications, including imaging systems (medical scanners, radars) and highspeed analogtodigital converters, increasing the sampling rate or density beyond the current stateoftheart is very expensive. In this lecture, we will learn about a new technique that tackles these issues using compressive sensing [1, 2]. We will replace the conventional sampling and reconstruction operations with a more general linear measurement scheme coupled with an optimization in order to acquire certain kinds of signals at a rate significantly below Nyquist. 2
Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
, 2004
"... Abstract. A simultaneous sparse approximation problem requests a good approximation of several input signals at once using different linear combinations of the same elementary signals. At the same time, the problem balances the error in approximation against the total number of elementary signals th ..."
Abstract

Cited by 366 (5 self)
 Add to MetaCart
(Show Context)
Abstract. A simultaneous sparse approximation problem requests a good approximation of several input signals at once using different linear combinations of the same elementary signals. At the same time, the problem balances the error in approximation against the total number of elementary signals that participate. These elementary signals typically model coherent structures in the input signals, and they are chosen from a large, linearly dependent collection. The first part of this paper proposes a greedy pursuit algorithm, called Simultaneous Orthogonal Matching Pursuit, for simultaneous sparse approximation. Then it presents some numerical experiments that demonstrate how a sparse model for the input signals can be identified more reliably given several input signals. Afterward, the paper proves that the SOMP algorithm can compute provably good solutions to several simultaneous sparse approximation problems. The second part of the paper develops another algorithmic approach called convex relaxation, and it provides theoretical results on the performance of convex relaxation for simultaneous sparse approximation. Date: Typeset on March 17, 2005. Key words and phrases. Greedy algorithms, Orthogonal Matching Pursuit, multiple measurement vectors, simultaneous
Bayesian Compressive Sensing
, 2007
"... The data of interest are assumed to be represented as Ndimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M ≪ N of basisfunction coefficients associated with B. Compressive sensing ..."
Abstract

Cited by 330 (24 self)
 Add to MetaCart
The data of interest are assumed to be represented as Ndimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M ≪ N of basisfunction coefficients associated with B. Compressive sensing is a framework whereby one does not measure one of the aforementioned Ndimensional signals directly, but rather a set of related measurements, with the new measurements a linear combination of the original underlying Ndimensional signal. The number of required compressivesensing measurements is typically much smaller than N, offering the potential to simplify the sensing system. Let f denote the unknown underlying Ndimensional signal, and g a vector of compressivesensing measurements, then one may approximate f accurately by utilizing knowledge of the (underdetermined) linear relationship between f and g, in addition to knowledge of the fact that f is compressible in B. In this paper we employ a Bayesian formalism for estimating the underlying signal f based on compressivesensing measurements g. The proposed framework has the following properties: (i) in addition to estimating the underlying signal f, “error bars ” are also estimated, these giving a measure of confidence in the inverted signal; (ii) using knowledge of the error bars, a principled means is provided for determining when a sufficient
Iterative hard thresholding for compressed sensing
 Appl. Comp. Harm. Anal
"... Compressed sensing is a technique to sample compressible signals below the Nyquist rate, whilst still allowing near optimal reconstruction of the signal. In this paper we present a theoretical analysis of the iterative hard thresholding algorithm when applied to the compressed sensing recovery probl ..."
Abstract

Cited by 329 (18 self)
 Add to MetaCart
(Show Context)
Compressed sensing is a technique to sample compressible signals below the Nyquist rate, whilst still allowing near optimal reconstruction of the signal. In this paper we present a theoretical analysis of the iterative hard thresholding algorithm when applied to the compressed sensing recovery problem. We show that the algorithm has the following properties (made more precise in the main text of the paper) • It gives nearoptimal error guarantees. • It is robust to observation noise. • It succeeds with a minimum number of observations. • It can be used with any sampling operator for which the operator and its adjoint can be computed. • The memory requirement is linear in the problem size. Preprint submitted to Elsevier 28 January 2009 • Its computational complexity per iteration is of the same order as the application of the measurement operator or its adjoint. • It requires a fixed number of iterations depending only on the logarithm of a form of signal to noise ratio of the signal. • Its performance guarantees are uniform in that they only depend on properties of the sampling operator and signal sparsity.
Compressed sensing and best kterm approximation
 J. Amer. Math. Soc
, 2009
"... Compressed sensing is a new concept in signal processing where one seeks to minimize the number of measurements to be taken from signals while still retaining the information necessary to approximate them well. The ideas have their origins in certain abstract results from functional analysis and app ..."
Abstract

Cited by 282 (10 self)
 Add to MetaCart
(Show Context)
Compressed sensing is a new concept in signal processing where one seeks to minimize the number of measurements to be taken from signals while still retaining the information necessary to approximate them well. The ideas have their origins in certain abstract results from functional analysis and approximation theory by Kashin [23] but were recently brought into the forefront by the work of Candès, Romberg and Tao [7, 5, 6] and Donoho [9] who constructed concrete algorithms and showed their promise in application. There remain several fundamental questions on both the theoretical and practical side of compressed sensing. This paper is primarily concerned about one of these theoretical issues revolving around just how well compressed sensing can approximate a given signal from a given budget of fixed linear measurements, as compared to adaptive linear measurements. More precisely, we consider discrete signals x ∈ IR N, allocate n < N linear measurements of x, and we describe the range of k for which these measurements encode enough information to recover x in the sense of ℓp to the accuracy of best kterm approximation. We also consider the problem of having such accuracy only with high probability.
Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit
, 2006
"... Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our pr ..."
Abstract

Cited by 274 (22 self)
 Add to MetaCart
(Show Context)
Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our proposal, Stagewise Orthogonal Matching Pursuit (StOMP), successively transforms the signal into a negligible residual. Starting with initial residual r0 = y, at the sth stage it forms the ‘matched filter ’ Φ T rs−1, identifies all coordinates with amplitudes exceeding a speciallychosen threshold, solves a leastsquares problem using the selected coordinates, and subtracts the leastsquares fit, producing a new residual. After a fixed number of stages (e.g. 10), it stops. In contrast to Orthogonal Matching Pursuit (OMP), many coefficients can enter the model at each stage in StOMP while only one enters per stage in OMP; and StOMP takes a fixed number of stages (e.g. 10), while OMP can take many (e.g. n). StOMP runs much faster than competing proposals for sparse solutions, such as ℓ1 minimization and OMP, and so is attractive for solving largescale problems. We use phase diagrams to compare algorithm performance. The problem of recovering a ksparse vector x0 from (y, Φ) where Φ is random n × N and y = Φx0 is represented by a point (n/N, k/n)
Sparsity and Incoherence in Compressive Sampling
, 2006
"... We consider the problem of reconstructing a sparse signal x 0 ∈ R n from a limited number of linear measurements. Given m randomly selected samples of Ux 0, where U is an orthonormal matrix, we show that ℓ1 minimization recovers x 0 exactly when the number of measurements exceeds m ≥ Const · µ 2 (U) ..."
Abstract

Cited by 238 (13 self)
 Add to MetaCart
We consider the problem of reconstructing a sparse signal x 0 ∈ R n from a limited number of linear measurements. Given m randomly selected samples of Ux 0, where U is an orthonormal matrix, we show that ℓ1 minimization recovers x 0 exactly when the number of measurements exceeds m ≥ Const · µ 2 (U) · S · log n, where S is the number of nonzero components in x 0, and µ is the largest entry in U properly normalized: µ(U) = √ n · maxk,j Uk,j. The smaller µ, the fewer samples needed. The result holds for “most ” sparse signals x 0 supported on a fixed (but arbitrary) set T. Given T, if the sign of x 0 for each nonzero entry on T and the observed values of Ux 0 are drawn at random, the signal is recovered with overwhelming probability. Moreover, there is a sense in which this is nearly optimal since any method succeeding with the same probability would require just about this many samples.
Iteratively reweighted algorithms for compressive sensing
 in 33rd International Conference on Acoustics, Speech, and Signal Processing (ICASSP
, 2008
"... The theory of compressive sensing has shown that sparse signals can be reconstructed exactly from many fewer measurements than traditionally believed necessary. In [1], it was shown empirically that using ℓ p minimization with p < 1 can do so with fewer measurements than with p = 1. In this paper ..."
Abstract

Cited by 185 (8 self)
 Add to MetaCart
(Show Context)
The theory of compressive sensing has shown that sparse signals can be reconstructed exactly from many fewer measurements than traditionally believed necessary. In [1], it was shown empirically that using ℓ p minimization with p < 1 can do so with fewer measurements than with p = 1. In this paper we consider the use of iteratively reweighted algorithms for computing local minima of the nonconvex problem. In particular, a particular regularization strategy is found to greatly improve the ability of a reweighted leastsquares algorithm to recover sparse signals, with exact recovery being observed for signals that are much less sparse than required by an unregularized version (such as FOCUSS, [2]). Improvements are also observed for the reweightedℓ 1 approach of [3]. Index Terms — Compressive sensing, signal reconstruction, nonconvex optimization, iteratively reweighted least squares, ℓ 1 minimization. 1.
Combining geometry and combinatorics: a unified approach to sparse signal recovery
, 2008
"... There are two main algorithmic approaches to sparse signal recovery: geometric and combinatorial. The geometric approach starts with a geometric constraint on the measurement matrix Φ and then uses linear programming to decode information about x from Φx. The combinatorial approach constructs Φ an ..."
Abstract

Cited by 157 (14 self)
 Add to MetaCart
There are two main algorithmic approaches to sparse signal recovery: geometric and combinatorial. The geometric approach starts with a geometric constraint on the measurement matrix Φ and then uses linear programming to decode information about x from Φx. The combinatorial approach constructs Φ and a combinatorial decoding algorithm to match. We present a unified approach to these two classes of sparse signal recovery algorithms. The unifying elements are the adjacency matrices of highquality unbalanced expanders. We generalize the notion of Restricted Isometry Property (RIP), crucial to compressed sensing results for signal recovery, from the Euclidean norm to the ℓp norm for p ≈ 1, and then show that unbalanced expanders are essentially equivalent to RIPp matrices. From known deterministic constructions for such matrices, we obtain new deterministic measurement matrix constructions and algorithms for signal recovery which, compared to previous deterministic algorithms, are superior in either the number of measurements or in noise tolerance.