Results 1  10
of
816
A ContextualBandit Approach to Personalized News Article Recommendation
"... Personalized web services strive to adapt their services (advertisements, news articles, etc.) to individual users by making use of both content and user information. Despite a few recent advances, this problem remains challenging for at least two reasons. First, web service is featured with dynamic ..."
Abstract

Cited by 178 (16 self)
 Add to MetaCart
(Show Context)
Personalized web services strive to adapt their services (advertisements, news articles, etc.) to individual users by making use of both content and user information. Despite a few recent advances, this problem remains challenging for at least two reasons. First, web service is featured with dynamically changing pools of content, rendering traditional collaborative filtering methods inapplicable. Second, the scale of most web services of practical interest calls for solutions that are both fast in learning and computation. In this work, we model personalized recommendation of news articles as a contextual bandit problem, a principled approach in which a learning algorithm sequentially selects articles to serve users based on contextual information about the users and articles, while simultaneously adapting its articleselection strategy based on userclick feedback to maximize total user clicks. The contributions of this work are threefold. First, we propose a new, general contextual bandit algorithm that is computationally efficient and well motivated from learning theory. Second, we argue that any bandit algorithm can be reliably evaluated offline using previously recorded random traffic. Finally, using this offline evaluation method, we successfully applied our new algorithm to a Yahoo! Front Page Today Module dataset containing over 33 million events. Results showed a 12.5 % click lift compared to a standard contextfree bandit algorithm, and the advantage becomes even greater when data gets more scarce.
Combining Online and Offline Knowledge in UCT
 In Zoubin Ghahramani, editor, Proceedings of the International Conference of Machine Learning (ICML 2007
, 2007
"... The UCT algorithm learns a value function online using samplebased search. The TD(λ) algorithm can learn a value function offline for the onpolicy distribution. We consider three approaches for combining offline and online value functions in the UCT algorithm. First, the offline value function is ..."
Abstract

Cited by 140 (7 self)
 Add to MetaCart
(Show Context)
The UCT algorithm learns a value function online using samplebased search. The TD(λ) algorithm can learn a value function offline for the onpolicy distribution. We consider three approaches for combining offline and online value functions in the UCT algorithm. First, the offline value function is used as a default policy during MonteCarlo simulation. Second, the UCT value function is combined with a rapid online estimate of action values. Third, the offline value function is used as prior knowledge in the UCT search tree. We evaluate these algorithms in 9 × 9 Go against GnuGo 3.7.10. The first algorithm performs better than UCT with a random simulation policy, but surprisingly, worse than UCT with a weaker, handcrafted simulation policy. The second algorithm outperforms UCT altogether. The third algorithm outperforms UCT with handcrafted prior knowledge. We combine these algorithms in MoGo, the world’s strongest 9 × 9 Go program. Each technique significantly improves MoGo’s playing strength. 1.
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
"... Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multiarmed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low RKHS norm. We resolve the important open problem of deriving regre ..."
Abstract

Cited by 125 (13 self)
 Add to MetaCart
(Show Context)
Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multiarmed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low RKHS norm. We resolve the important open problem of deriving regret bounds for this setting, which imply novel convergence rates for GP optimization. We analyze GPUCB, an intuitive upperconfidence based algorithm, and bound its cumulative regret in terms of maximal information gain, establishing a novel connection between GP optimization and experimental design. Moreover, by bounding the latter in terms of operator spectra, we obtain explicit sublinear regret bounds for many commonly used covariance functions. In some important cases, our bounds have surprisingly weak dependence on the dimensionality. In our experiments on real sensor data, GPUCB compares favorably with other heuristical GP optimization approaches. 1.
Nearly tight bounds for the continuumarmed bandit problem
 Advances in Neural Information Processing Systems 17
, 2005
"... In the multiarmed bandit problem, an online algorithm must choose from a set of strategies in a sequence of n trials so as to minimize the total cost of the chosen strategies. While nearly tight upper and lower bounds are known in the case when the strategy set is finite, much less is known when th ..."
Abstract

Cited by 118 (8 self)
 Add to MetaCart
(Show Context)
In the multiarmed bandit problem, an online algorithm must choose from a set of strategies in a sequence of n trials so as to minimize the total cost of the chosen strategies. While nearly tight upper and lower bounds are known in the case when the strategy set is finite, much less is known when there is an infinite strategy set. Here we consider the case when the set of strategies is a subset of R d, and the cost functions are continuous. In the d = 1 case, we improve on the bestknown upper and lower bounds, closing the gap to a sublogarithmic factor. We also consider the case where d> 1 and the cost functions are convex, adapting a recent online convex optimization algorithm of Zinkevich to the sparser feedback model of the multiarmed bandit problem. 1
MonteCarlo planning in large POMDPs
 in Proc. Neural Inf. Process. Syst
, 2010
"... Abstract This paper introduces a MonteCarlo algorithm for online planning in large POMDPs. The algorithm combines a MonteCarlo update of the agent's belief state with a MonteCarlo tree search from the current belief state. The new algorithm, POMCP, has two important properties. First, Monte ..."
Abstract

Cited by 112 (8 self)
 Add to MetaCart
(Show Context)
Abstract This paper introduces a MonteCarlo algorithm for online planning in large POMDPs. The algorithm combines a MonteCarlo update of the agent's belief state with a MonteCarlo tree search from the current belief state. The new algorithm, POMCP, has two important properties. First, MonteCarlo sampling is used to break the curse of dimensionality both during belief state updates and during planning. Second, only a black box simulator of the POMDP is required, rather than explicit probability distributions. These properties enable POMCP to plan effectively in significantly larger POMDPs than has previously been possible. We demonstrate its effectiveness in three large POMDPs. We scale up a wellknown benchmark problem, rocksample, by several orders of magnitude. We also introduce two challenging new POMDPs: 10 × 10 battleship and partially observable PacMan, with approximately 10 18 and 10 56 states respectively. Our MonteCarlo planning algorithm achieved a high level of performance with no prior knowledge, and was also able to exploit simple domain knowledge to achieve better results with less search. POMCP is the first general purpose planner to achieve high performance in such large and unfactored POMDPs.
Evolutionary function approximation for reinforcement learning
 Journal of Machine Learning Research
, 2006
"... Ø�ÓÒ�ÔÔÖÓÜ�Ñ�Ø�ÓÒ�ÒÓÚ�Ð�ÔÔÖÓ��ØÓ�ÙØÓÑ�Ø��ÐÐÝ× � Ø�ÓÒ�Ð���×�ÓÒ×Ì��×Ø��×�×�ÒÚ�×Ø���Ø�×�ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒ �Ò�ÓÖ�Ñ�ÒØÐ��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ö�Ø��×Ù�×�ØÓ�Ø��×�Ø�×� × ÁÒÑ�ÒÝÑ���Ò�Ð��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ò���ÒØÑÙ×ØÐ��ÖÒ Ñ�ÒØ���Ò×Ø�ÒØ��Ø�ÓÒÓ��ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒØ�ÓÒ�ÔÔÖÓÜ�Ñ � Ù�Ð×Ø��Ø�Ö���ØØ�Ö��Ð�ØÓÐ��ÖÒÁÔÖ�×�ÒØ��ÙÐÐÝ�ÑÔÐ � Ø�Ó ..."
Abstract

Cited by 110 (17 self)
 Add to MetaCart
Ø�ÓÒ�ÔÔÖÓÜ�Ñ�Ø�ÓÒ�ÒÓÚ�Ð�ÔÔÖÓ��ØÓ�ÙØÓÑ�Ø��ÐÐÝ× � Ø�ÓÒ�Ð���×�ÓÒ×Ì��×Ø��×�×�ÒÚ�×Ø���Ø�×�ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒ �Ò�ÓÖ�Ñ�ÒØÐ��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ö�Ø��×Ù�×�ØÓ�Ø��×�Ø�×� × ÁÒÑ�ÒÝÑ���Ò�Ð��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ò���ÒØÑÙ×ØÐ��ÖÒ Ñ�ÒØ���Ò×Ø�ÒØ��Ø�ÓÒÓ��ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒØ�ÓÒ�ÔÔÖÓÜ�Ñ � Ù�Ð×Ø��Ø�Ö���ØØ�Ö��Ð�ØÓÐ��ÖÒÁÔÖ�×�ÒØ��ÙÐÐÝ�ÑÔÐ � Ø�ÓÒÛ���ÓÑ��Ò�×Æ��Ì�Ò�ÙÖÓ�ÚÓÐÙØ�ÓÒ�ÖÝÓÔØ�Ñ�Þ � Ð�Ø�Ò��ÙÒØ�ÓÒ�ÔÔÖÓÜ�Ñ�ØÓÖÖ�ÔÖ�×�ÒØ�Ø�ÓÒ×Ø��Ø�Ò��Ð� Ø�ÓÒØ��Ò�ÕÙ�Û�Ø�ÉÐ��ÖÒ�Ò��ÔÓÔÙÐ�ÖÌ�Ñ�Ø�Ó�Ì� � �Æ��ÒØ�Ò��Ú��Ù�ÐÐ��ÖÒ�Ò�Ì��×Ñ�Ø�Ó��ÚÓÐÚ�×�Ò��Ú� � ÓÔØ�Ñ�Þ�Ø�ÓÒ��ÐÐ�ÒØ��×�Ø��ÓÖÝ��Ú�ÐÓÔ�Ò��«�Ø�Ú�Ö��Ò �ÓÖÁÒ×Ø����ØÖ���Ú�×ÓÒÐÝÔÓ×�Ø�Ú��Ò�Ò���Ø�Ú�Ö�Û�Ö� × ÔÖÓ�Ð�Ñ××Ù��×ÖÓ�ÓØÓÒØÖÓÐ��Ñ�ÔÐ�Ý�Ò��Ò�×Ý×Ø�Ñ �ÒÛ���Ø�����ÒØÒ�Ú�Ö×��×�Ü�ÑÔÐ�×Ó�ÓÖÖ�Ø����Ú 1.
A survey of Monte Carlo tree search methods
 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI
, 2012
"... Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a ra ..."
Abstract

Cited by 104 (18 self)
 Add to MetaCart
(Show Context)
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm’s derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
Learning diverse rankings with multiarmed bandits
 In Proceedings of the 25 th ICML
, 2008
"... Algorithms for learning to rank Web documents usually assume a document’s relevance is independent of other documents. This leads to learned ranking functions that produce rankings with redundant results. In contrast, user studies have shown that diversity at high ranks is often preferred. We presen ..."
Abstract

Cited by 102 (7 self)
 Add to MetaCart
(Show Context)
Algorithms for learning to rank Web documents usually assume a document’s relevance is independent of other documents. This leads to learned ranking functions that produce rankings with redundant results. In contrast, user studies have shown that diversity at high ranks is often preferred. We present two online learning algorithms that directly learn a diverse ranking of documents based on users ’ clicking behavior. We show that these algorithms minimize abandonment, or alternatively, maximize the probability that a relevant document is found in the top k positions of a ranking. Moreover, one of our algorithms asymptotically achieves optimal worstcase performance even if users’ interests change. 1.
Stochastic linear optimization under bandit feedback
 In submission
, 2008
"... In the classical stochastic karmed bandit problem, in each of a sequence of T rounds, a decision maker chooses one of k arms and incurs a cost chosen from an unknown distribution associated with that arm. The goal is to minimize regret, defined as the difference between the cost incurred by the alg ..."
Abstract

Cited by 100 (8 self)
 Add to MetaCart
In the classical stochastic karmed bandit problem, in each of a sequence of T rounds, a decision maker chooses one of k arms and incurs a cost chosen from an unknown distribution associated with that arm. The goal is to minimize regret, defined as the difference between the cost incurred by the algorithm and the optimal cost. In the linear optimization version of this problem (first considered by Auer [2002]), we view the arms as vectors in Rn, and require that the costs be linear functions of the chosen vector. As before, it is assumed that the cost functions are sampled independently from an unknown distribution. In this setting, the goal is to find algorithms whose running time and regret behave well as functions of the number of rounds T and the dimensionality n (rather than the number of arms, k, which may be exponential in n or even infinite). We give a nearly complete characterization of this problem in terms of both upper and lower bounds for the regret. In certain special cases (such as when the decision region is a polytope), the regret is polylog(T). In general though, the optimal regret is Θ ∗ ( √ T) — our lower bounds rule out the possibility of obtaining polylog(T) rates in general. We present two variants of an algorithm based on the idea of “upper confidence bounds. ” The first, due to Auer [2002], but not fully analyzed, obtains regret whose dependence on n and T are both essentially optimal, but which may be computationally intractable when the decision set is a polytope. The second version can be efficiently implemented when the decision set is a polytope (given as an intersection √ of halfspaces), but gives up a factor of n in the regret bound. Our results also extend to the setting where the set of allowed decisions may change over time.
Nearoptimal Regret Bounds for Reinforcement Learning
"... For undiscounted reinforcement learning in Markov decision processes (MDPs) we consider the total regret of a learning algorithm with respect to an optimal policy. In order to describe the transition structure of an MDP we propose a new parameter: An MDP has diameter D if for any pair of states s, s ..."
Abstract

Cited by 98 (11 self)
 Add to MetaCart
For undiscounted reinforcement learning in Markov decision processes (MDPs) we consider the total regret of a learning algorithm with respect to an optimal policy. In order to describe the transition structure of an MDP we propose a new parameter: An MDP has diameter D if for any pair of states s, s ′ there is a policy which moves from s to s ′ in at most D steps (on average). We present a reinforcement learning algorithm with total regret Õ(DS √ AT) after T steps for any unknown MDP with S states, A actions per state, and diameter D. This bound holds with high probability. We also present a corresponding lower bound of Ω ( √ DSAT) on the total regret of any learning algorithm. 1