Results 1  10
of
247
Attributebased encryption for finegrained access control of encrypted data
 In Proc. of ACMCCS’06
, 2006
"... As more sensitive data is shared and stored by thirdparty sites on the Internet, there will be a need to encrypt data stored at these sites. One drawback of encrypting data, is that it can be selectively shared only at a coarsegrained level (i.e., giving another party your private key). We develop ..."
Abstract

Cited by 481 (23 self)
 Add to MetaCart
(Show Context)
As more sensitive data is shared and stored by thirdparty sites on the Internet, there will be a need to encrypt data stored at these sites. One drawback of encrypting data, is that it can be selectively shared only at a coarsegrained level (i.e., giving another party your private key). We develop a new cryptosystem for finegrained sharing of encrypted data that we call KeyPolicy AttributeBased Encryption (KPABE). In our cryptosystem, ciphertexts are labeled with sets of attributes and private keys are associated with access structures that control which ciphertexts a user is able to decrypt. We demonstrate the applicability of our construction to sharing of auditlog information and broadcast encryption. Our construction supports delegation of private keys which subsumes Hierarchical IdentityBased Encryption (HIBE). E.3 [Data En
Fuzzy identitybased encryption
 In EUROCRYPT
, 2005
"... We introduce a new type of IdentityBased Encryption (IBE) scheme that we call Fuzzy IdentityBased Encryption. In Fuzzy IBE we view an identity as set of descriptive attributes. A Fuzzy IBE scheme allows for a private key for an identity, ω, to decrypt a ciphertext encrypted with an identity, ω ′ , ..."
Abstract

Cited by 354 (20 self)
 Add to MetaCart
(Show Context)
We introduce a new type of IdentityBased Encryption (IBE) scheme that we call Fuzzy IdentityBased Encryption. In Fuzzy IBE we view an identity as set of descriptive attributes. A Fuzzy IBE scheme allows for a private key for an identity, ω, to decrypt a ciphertext encrypted with an identity, ω ′ , if and only if the identities ω and ω ′ are close to each other as measured by the “set overlap ” distance metric. A Fuzzy IBE scheme can be applied to enable encryption using biometric inputs as identities; the errortolerance property of a Fuzzy IBE scheme is precisely what allows for the use of biometric identities, which inherently will have some noise each time they are sampled. Additionally, we show that FuzzyIBE can be used for a type of application that we term “attributebased encryption”. In this paper we present two constructions of Fuzzy IBE schemes. Our constructions can be viewed as an IdentityBased Encryption of a message under several attributes that compose a (fuzzy) identity. Our IBE schemes are both errortolerant and secure against collusion attacks. Additionally, our basic construction does not use random oracles. We prove the security of our schemes under the SelectiveID security model. 1
Efficient identitybased encryption without random oracles
, 2005
"... We present the first efficient IdentityBased Encryption (IBE) scheme that is fully secure without random oracles. We first present our IBE construction and reduce the security of our scheme to the decisional Bilinear DiffieHellman (BDH) problem. Additionally, we show that our techniques can be use ..."
Abstract

Cited by 339 (18 self)
 Add to MetaCart
(Show Context)
We present the first efficient IdentityBased Encryption (IBE) scheme that is fully secure without random oracles. We first present our IBE construction and reduce the security of our scheme to the decisional Bilinear DiffieHellman (BDH) problem. Additionally, we show that our techniques can be used to build a new signature scheme that is secure under the computational DiffieHellman assumption without random oracles. 1
ChosenCiphertext Security from IdentityBased Encryption. Adv
 in Cryptology — Eurocrypt 2004, LNCS
, 2004
"... We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a n ..."
Abstract

Cited by 279 (14 self)
 Add to MetaCart
(Show Context)
We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a new paradigm for achieving CCAsecurity; this paradigm avoids “proofs of wellformedness ” that have been shown to underlie previous constructions. Second, instantiating our construction using known IBE constructions we obtain CCAsecure encryption schemes whose performance is competitive with the most efficient CCAsecure schemes to date. Our techniques extend naturally to give an efficient method for securing also IBE schemes (even hierarchical ones) against adaptive chosenciphertext attacks. Coupled with previous work, this gives the first efficient constructions of CCAsecure IBE schemes. 1
Hierarchical identity based encryption with constant size ciphertext
, 2005
"... ..."
(Show Context)
Efficient SelectiveID Secure IdentityBased Encryption Without Random Oracles
 6. , SECURE IDENTITY BASED ENCRYPTION WITHOUT RANDOM ORACLES., IN FRANKLIN [20
"... We construct two efficient Identity Based Encryption (IBE) systems that are selective identity secure without the random oracle model. Selective identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time t ..."
Abstract

Cited by 219 (9 self)
 Add to MetaCart
We construct two efficient Identity Based Encryption (IBE) systems that are selective identity secure without the random oracle model. Selective identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to the identity that it intends to attack, whereas in the standard model the adversary is allowed to choose this identity adaptively. Our first secure IBE system extends to give a selective identity Hierarchical IBE secure without random oracles.
Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products
"... Abstract. Predicate encryption is a new paradigm generalizing, among other things, identitybased encryption. In a predicate encryption scheme, secret keys correspond to predicates and ciphertexts are associated with attributes; the secret key SKf corresponding to a predicate f can be used to decryp ..."
Abstract

Cited by 168 (23 self)
 Add to MetaCart
Abstract. Predicate encryption is a new paradigm generalizing, among other things, identitybased encryption. In a predicate encryption scheme, secret keys correspond to predicates and ciphertexts are associated with attributes; the secret key SKf corresponding to a predicate f can be used to decrypt a ciphertext associated with attribute I if and only if f(I) = 1. Constructions of such schemes are currently known for relatively few classes of predicates. We construct such a scheme for predicates corresponding to the evaluation of inner products over ZN (for some large integer N). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulae, or threshold predicates (among others). Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right. 1
Efficient SelectiveID Secure Identity Based Encryption without Random Oracles
, 2004
"... We construct two efficient Identity Based Encryption (IBE) systems that are selective identity secure without the random oracle model. Selective identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to ..."
Abstract

Cited by 146 (9 self)
 Add to MetaCart
We construct two efficient Identity Based Encryption (IBE) systems that are selective identity secure without the random oracle model. Selective identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to the identity that it intends to attack, whereas in the standard model the adversary is allowed to choose this identity adaptively. Our first secure IBE system extends to give a selective identity Hierarchical IBE secure without random oracles.
Practical identitybased encryption without random oracles
 of LNCS
"... Abstract. We present an Identity Based Encryption (IBE) system that is fully secure in the standard model and has several advantages over previous such systems – namely, computational efficiency, shorter public parameters, and a “tight ” security reduction, albeit to a stronger assumption that depen ..."
Abstract

Cited by 139 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We present an Identity Based Encryption (IBE) system that is fully secure in the standard model and has several advantages over previous such systems – namely, computational efficiency, shorter public parameters, and a “tight ” security reduction, albeit to a stronger assumption that depends on the number of private key generation queries made by the adversary. Our assumption is a variant of Boneh et al.’s decisional Bilinear DiffieHellman Exponent assumption, which has been used to construct efficient hierarchical IBE and broadcast encryption systems. The construction is remarkably simple. It also provides recipient anonymity automatically, providing a second (and more efficient) solution to the problem of achieving anonymous IBE without random oracles. Finally, our proof of CCA2 security, which has more in common with the security proof for the CramerShoup encryption scheme than with security proofs for other IBE systems, may be of independent interest.
Fully Secure Functional Encryption: AttributeBased Encryption and (Hierarchical) Inner Product Encryption
"... In this paper, we present two fully secure functional encryption schemes. Our first result is a fully secure attributebased encryption (ABE) scheme. Previous constructions of ABE were only proven to be selectively secure. We achieve full security by adapting the dual system encryption methodology r ..."
Abstract

Cited by 139 (21 self)
 Add to MetaCart
In this paper, we present two fully secure functional encryption schemes. Our first result is a fully secure attributebased encryption (ABE) scheme. Previous constructions of ABE were only proven to be selectively secure. We achieve full security by adapting the dual system encryption methodology recently introduced by Waters and previously leveraged to obtain fully secure IBE and HIBE systems. The primary challenge in applying dual system encryption to ABE is the richer structure of keys and ciphertexts. In an IBE or HIBE system, keys and ciphertexts are both associated with the same type of simple object: identities. In an ABE system, keys and ciphertexts are associated with more complex objects: attributes and access formulas. We use a novel informationtheoretic argument to adapt the dual system encryption methodology to the more complicated structure of ABE systems. We construct our system in composite order bilinear groups, where the order is a product of three primes. We prove the security of our system from three static assumptions. Our ABE scheme supports arbitrary monotone access formulas. Our second result is a fully secure (attributehiding) predicate encryption (PE) scheme