Results 1  10
of
61
Fair Resource Allocation in Wireless Networks using Queuelengthbased Scheduling and Congestion Control
"... We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different receiver. The channel conditions may be timevarying and different for different receivers. It is wellknown that appropriate ..."
Abstract

Cited by 202 (45 self)
 Add to MetaCart
We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different receiver. The channel conditions may be timevarying and different for different receivers. It is wellknown that appropriately chosen queuelength based policies are throughputoptimal while other policies based on the estimation of channel statistics can be used to allocate resources fairly (such as proportional fairness) among competing users. In this paper, we show that a combination of queuelengthbased scheduling at the base station and congestion control implemented either at the base station or at the end users can lead to fair resource allocation and queuelength stability.
Stable scheduling policies for fading wireless channels
 IEEE/ACM Trans. Networking
, 2005
"... We study the problem of stable scheduling for a class of wireless networks. The goal is to stabilize the queues holding information to be transmitted over a fading channel. Few assumptions are made on the arrival process statistics other than the assumption that their mean values lie within the capa ..."
Abstract

Cited by 136 (39 self)
 Add to MetaCart
(Show Context)
We study the problem of stable scheduling for a class of wireless networks. The goal is to stabilize the queues holding information to be transmitted over a fading channel. Few assumptions are made on the arrival process statistics other than the assumption that their mean values lie within the capacity region and that they satisfy a version of the law of large numbers. We prove that, for any mean arrival rate that lies in the capacity region, the queues will be stable under our policy. Moreover, we show that it is easy to incorporate imperfect queue length information and other approximations that can simplify the implementation of our policy. 1
Joint asynchronous congestion control and distributed scheduling for multihop wireless networks
 in the Proceedings IEEE Infocom
"... Abstract — We consider a multihop wireless network shared by many users. For an interference model that only constrains a node to either transmit or receive at a time, but not both, we propose an architecture for fair resource allocation that consists of a distributed scheduling algorithm operating ..."
Abstract

Cited by 60 (16 self)
 Add to MetaCart
(Show Context)
Abstract — We consider a multihop wireless network shared by many users. For an interference model that only constrains a node to either transmit or receive at a time, but not both, we propose an architecture for fair resource allocation that consists of a distributed scheduling algorithm operating in conjunction with an asynchronous congestion control algorithm. We show that the proposed joint congestion control and scheduling algorithm supports at least onethird of the throughput supportable by any other algorithm, including centralized algorithms. I.
Order optimal delay for opportunistic scheduling in multiuser wireless uplinks and downlinks
 Proc. of Allerton Conf. on Communication, Control, and Computing (invited paper
, 2006
"... Abstract — We consider a onehop wireless network with independent time varying channels and N users, such as a multiuser uplink or downlink. We first show that general classes of scheduling algorithms that do not consider queue backlog necessarily incur average delay that grows at least linearly wi ..."
Abstract

Cited by 45 (6 self)
 Add to MetaCart
(Show Context)
Abstract — We consider a onehop wireless network with independent time varying channels and N users, such as a multiuser uplink or downlink. We first show that general classes of scheduling algorithms that do not consider queue backlog necessarily incur average delay that grows at least linearly with N. We then construct a dynamic queuelength aware algorithm that stabilizes the system and achieves an average delay that is independent of N. This is the first analytical demonstration that O(1) delay is achievable in such a multiuser wireless setting. The delay bounds are achieved via a technique of queue grouping together with basic Lyapunov stability and statistical multiplexing concepts.
A large deviations analysis of scheduling in wireless networks
 Earlier versions of the paper appeared in the IEEE CDC 2004, IEEE CDC 2005 and IEEE ISIT
, 2006
"... We consider a cellular network consisting of a base station and N receivers. The channel states of the receivers are assumed to be identical and independent of each other. The goal is to compare the throughput of two different scheduling policies (a queuelengthbased policy and a greedy scheduling ..."
Abstract

Cited by 37 (7 self)
 Add to MetaCart
(Show Context)
We consider a cellular network consisting of a base station and N receivers. The channel states of the receivers are assumed to be identical and independent of each other. The goal is to compare the throughput of two different scheduling policies (a queuelengthbased policy and a greedy scheduling policy) given an upper bound on the queue overflow probability or the delay violation probability. We first consider a simple channel model, where each channel is assumed to be in one of two states (ON or OFF). Given an upper bound on the delay violation probability or an upper bound on the queue overflow probability, we show that the total network throughput of the queuelengthbased policy is strictly larger than the throughput of the greedy policy for all N. Further, the throughput of the queuelengthbased policy is a strictly increasing function of N while the throughput of the greedy policy does not have this property. Finally, for general channel state models, we show that the relative performances of the the greedy and QLB policies have a similar behavior. policy.
Optimal Transmission Scheduling in Symmetric Communication Models with Intermittent Connectivity
, 2002
"... We consider a slotted system with N queues, and i.i.d. Bernoulli arrivals at each queue during each slot. Each queue is associated with a channel that changes between "on" and "off" states according to i.i.d. Bernoulli processes. We assume that the system has K identical transmit ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
We consider a slotted system with N queues, and i.i.d. Bernoulli arrivals at each queue during each slot. Each queue is associated with a channel that changes between "on" and "off" states according to i.i.d. Bernoulli processes. We assume that the system has K identical transmitters ("servers"). Each server, during each slot, can transmit up to C packets from each queue associated with an "on" channel. We show that a policy that assigns the servers to the longest queues whose channel is "on" minimizes the total queue size, as well as a broad class of other performance criteria. We provide several extensions, as well as some qualitative results for the limiting case where N is very large. Finally, we consider a "fluid" model under which fractional packets can be served, and subject to a constraint that at most C packets can be served in total from all of the N queues. We show that when K = N , there is an optimal policy which serves the queues so that the resulting vector of queue lengths is "Most Balanced."
Throughputoptimal Scheduling in Multichannel Access Point Networks under TimeVarying Channel Rates
, 2005
"... We consider the problem of uplink/downlink scheduling in a multichannel wireless access point network where channel states differ across channels as well as users, vary with time, and can be measured only infrequently. We demonstrate that, unlike infrequent measurement of queue lengths, infrequent m ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
(Show Context)
We consider the problem of uplink/downlink scheduling in a multichannel wireless access point network where channel states differ across channels as well as users, vary with time, and can be measured only infrequently. We demonstrate that, unlike infrequent measurement of queue lengths, infrequent measurement of channel states reduce the maximum attainable throughput. We then prove that in frequency division multiplexed systems, a dynamic scheduling policy that depends on both the channel rates (averaged over the measurement interval) and the queue lengths, attains the maximum possible throughput. We also generalize the scheduling policy to solve the joint power allocation and scheduling problem in orthogonal frequency division multiplexed systems. In addition, we provide simulation studies that demonstrate the impact of the frequency of channel and queue state measurements on the average delay and attained throughput. Index Terms Throughputoptimal scheduling, Multichannel access point networks, Infrequent channel measurements.
Delay analysis for maximal scheduling in wireless networks with bursty traffic
 Proc. IEEE INFOCOM
, 2008
"... Abstract—We consider the delay properties of onehop networks with general interference constraints and multiple traffic streams with timecorrelated arrivals. We first treat the case when arrivals are modulated by independent finite state Markov chains. We show that the well known maximal schedulin ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
(Show Context)
Abstract—We consider the delay properties of onehop networks with general interference constraints and multiple traffic streams with timecorrelated arrivals. We first treat the case when arrivals are modulated by independent finite state Markov chains. We show that the well known maximal scheduling algorithm achieves average delay that grows at most logarithmically in the largest number of interferers at any link. Further, in the important special case when each Markov process has at most two states (such as bursty ON/OFF sources), we prove that average delay is independent of the number of nodes and links in the network, and hence is orderoptimal. We provide tight delay bounds in terms of the individual autocorrelation parameters of the traffic sources. These are perhaps the first orderoptimal delay results for controlled queueing networks that explicitly account for such statistical information. Index Terms—queueing analysis, Markov chains I.
Delay analysis for max weight opportunistic scheduling in wireless systems. arXiv:0806.2345v1
, 2008
"... Abstract—We consider the delay properties of maxweight opportunistic scheduling in a multiuser ON/OFF wireless system, such as a multiuser downlink or uplink. It is well known that maxweight scheduling stabilizes the network (and hence yields maximum throughput) whenever input rates are inside t ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
(Show Context)
Abstract—We consider the delay properties of maxweight opportunistic scheduling in a multiuser ON/OFF wireless system, such as a multiuser downlink or uplink. It is well known that maxweight scheduling stabilizes the network (and hence yields maximum throughput) whenever input rates are inside the network capacity region. We show that when arrival and channel processes are independent, average delay of the maxweight policy is orderoptimal, in the sense that it does not grow with the number of network links. While recent queuegrouping algorithms are known to also yield orderoptimal delay, this is the first such result for the simpler class of maxweight policies. I.