Results 1  10
of
55
Rules and Strategies for Transforming Functional and Logic Programs
 ACM Computing Surveys
, 1996
"... We present an overview of the program transformation methodology, focusing our attention on the socalled `rules + strategies' approach in the case of functional and logic programs. The paper is intended to offer an introduction to the subject. The various techniques we present are illustrated ..."
Abstract

Cited by 86 (5 self)
 Add to MetaCart
We present an overview of the program transformation methodology, focusing our attention on the socalled `rules + strategies' approach in the case of functional and logic programs. The paper is intended to offer an introduction to the subject. The various techniques we present are illustrated via simple examples. A preliminary version of this report has been published in: Moller, B., Partsch, H., and Schuman, S. (eds.): Formal Program Development. Lecture Notes in Computer Science 755, Springer Verlag (1993) 263304. Also published in: ACM Computing Surveys, Vol 28, No. 2, June 1996. 3 1 Introduction The program transformation approach to the development of programs has first been advocated by [BurstallDarlington 77], although the basic ideas were already presented in previous papers by the same authors [Darlington 72, BurstallDarlington 75]. In that approach the task of writing a correct and efficient program is realized in two phases: the first phase consists in writing an in...
Nonresolution theorem proving
 Artificial Intelligence
, 1977
"... This talk reviews those efforts in automatic theorem proving, during the past few years, which have emphasized techniques other than resolution. These include: knowledge bases, natural deduction, reduction, (rewrite rules), typing, procedures, advice, controlled forward chaining, algebraic simplific ..."
Abstract

Cited by 73 (4 self)
 Add to MetaCart
(Show Context)
This talk reviews those efforts in automatic theorem proving, during the past few years, which have emphasized techniques other than resolution. These include: knowledge bases, natural deduction, reduction, (rewrite rules), typing, procedures, advice, controlled forward chaining, algebraic simplification, builtin associativity and commutativity, models, analogy, and manmachine systems. Examples are given and suggestions are made for future work. 1.
Mechanizing structural induction
 Theor. Comput. Sci
, 1979
"... This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are re ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
(Show Context)
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal noncommercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title,
Transformation of Logic Programs
 Handbook of Logic in Artificial Intelligence and Logic Programming
, 1998
"... Program transformation is a methodology for deriving correct and efficient programs from specifications. In this chapter, we will look at the so called 'rules + strategies' approach, and we will report on the main techniques which have been introduced in the literature for that approach, i ..."
Abstract

Cited by 40 (4 self)
 Add to MetaCart
Program transformation is a methodology for deriving correct and efficient programs from specifications. In this chapter, we will look at the so called 'rules + strategies' approach, and we will report on the main techniques which have been introduced in the literature for that approach, in the case of logic programs. We will also present some examples of program transformation, and we hope that through those examples the reader may acquire some familiarity with the techniques we will describe.
The BoyerMoore Theorem Prover and Its Interactive Enhancement
, 1995
"... . The socalled "BoyerMoore Theorem Prover" (otherwise known as "Nqthm") has been used to perform a variety of verification tasks for two decades. We give an overview of both this system and an interactive enhancement of it, "PcNqthm," from a number of perspectives. F ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
. The socalled "BoyerMoore Theorem Prover" (otherwise known as "Nqthm") has been used to perform a variety of verification tasks for two decades. We give an overview of both this system and an interactive enhancement of it, "PcNqthm," from a number of perspectives. First we introduce the logic in which theorems are proved. Then we briefly describe the two mechanized theorem proving systems. Next, we present a simple but illustrative example in some detail in order to give an impression of how these systems may be used successfully. Finally, we give extremely short descriptions of a large number of applications of these systems, in order to give an idea of the breadth of their uses. This paper is intended as an informal introduction to systems that have been described in detail and similarly summarized in many other books and papers; no new results are reported here. Our intention here is merely to present Nqthm to a new audience. This research was supported in part by ONR Contract N...
A Theorem Prover for a Computational Logic
, 1990
"... We briefly review a mechanical theoremprover for a logic of recursive functions over finitely generated objects including the integers, ordered pairs, and symbols. The prover, known both as NQTHM and as the BoyerMoore prover, contains a mechanized principle of induction and implementations of line ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
(Show Context)
We briefly review a mechanical theoremprover for a logic of recursive functions over finitely generated objects including the integers, ordered pairs, and symbols. The prover, known both as NQTHM and as the BoyerMoore prover, contains a mechanized principle of induction and implementations of linear resolution, rewriting, and arithmetic decision procedures. We describe some applications of the prover, including a proof of the correct implementation of a higher level language on a microprocessor defined at the gate level. We also describe the ongoing project of recoding the entire prover as an applicative function within its own logic.
Towards higherlevel supercompilation
 SECOND INTERNATIONAL WORKSHOP ON METACOMPUTATION IN RUSSIA
, 2010
"... We show that the power of supercompilation can be increased by constructing a hierarchy of supercompilers, in which a lowerlevel supercompiler is used by a higherlevel one for proving improvement lemmas. The lemmas thus obtained are used to transform expressions labeling nodes in process trees, in ..."
Abstract

Cited by 16 (9 self)
 Add to MetaCart
(Show Context)
We show that the power of supercompilation can be increased by constructing a hierarchy of supercompilers, in which a lowerlevel supercompiler is used by a higherlevel one for proving improvement lemmas. The lemmas thus obtained are used to transform expressions labeling nodes in process trees, in order to avoid premature generalizations. Such kind of supercompilation, based on a combination of several metalevels, is called higherlevel supercompilation (to differentiate it from higherorder supercompilation related to transforming higherorder functions). Higherlevel supercompilation may be considered as an application of a more general principle of metasystem transition.
Software Specification: A Comparison of Formal Methods
, 2001
"... Data Types and Software Validation ," Communications of the ACM, Vol. 21, No. 12, 1978, pp. 10481064. ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
Data Types and Software Validation ," Communications of the ACM, Vol. 21, No. 12, 1978, pp. 10481064.