Results 1 - 10
of
994
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
- IEEE TRANSACTIONS ON SIGNAL PROCESSING
, 2002
"... Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view o ..."
Abstract
-
Cited by 2006 (2 self)
- Add to MetaCart
(Show Context)
Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass (or “particle”) representations of probability densities, which can be applied to any state-space model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential importance sampling (SIS) algorithm. These are discussed and compared with the standard EKF through an illustrative example.
Prediction of complete gene structures in human genomic DNA
- J. Mol. Biol
, 1997
"... The problem of identifying genes in genomic DNA sequences by computational methods has attracted considerable research attention in recent years. From one point of view, the problem is closely ..."
Abstract
-
Cited by 1177 (9 self)
- Add to MetaCart
(Show Context)
The problem of identifying genes in genomic DNA sequences by computational methods has attracted considerable research attention in recent years. From one point of view, the problem is closely
Quantization
- IEEE TRANS. INFORM. THEORY
, 1998
"... The history of the theory and practice of quantization dates to 1948, although similar ideas had appeared in the literature as long ago as 1898. The fundamental role of quantization in modulation and analog-to-digital conversion was first recognized during the early development of pulsecode modula ..."
Abstract
-
Cited by 884 (12 self)
- Add to MetaCart
The history of the theory and practice of quantization dates to 1948, although similar ideas had appeared in the literature as long ago as 1898. The fundamental role of quantization in modulation and analog-to-digital conversion was first recognized during the early development of pulsecode modulation systems, especially in the 1948 paper of Oliver, Pierce, and Shannon. Also in 1948, Bennett published the first high-resolution analysis of quantization and an exact analysis of quantization noise for Gaussian processes, and Shannon published the beginnings of rate distortion theory, which would provide a theory for quantization as analog-to-digital conversion and as data compression. Beginning with these three papers of fifty years ago, we trace the history of quantization from its origins through this decade, and we survey the fundamentals of the theory and many of the popular and promising techniques for quantization.
Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains,”
- IEEE Trans. Speech Audio Process.,
, 1994
"... ..."
(Show Context)
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
- IEEE Transactions on Information Theory
, 2005
"... Important inference problems in statistical physics, computer vision, error-correcting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract
-
Cited by 585 (13 self)
- Add to MetaCart
(Show Context)
Important inference problems in statistical physics, computer vision, error-correcting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems that is exact when the factor graph is a tree, but only approximate when the factor graph has cycles. We show that BP fixed points correspond to the stationary points of the Bethe approximation of the free energy for a factor graph. We explain how to obtain regionbased free energy approximations that improve the Bethe approximation, and corresponding generalized belief propagation (GBP) algorithms. We emphasize the conditions a free energy approximation must satisfy in order to be a “valid ” or “maxent-normal ” approximation. We describe the relationship between four different methods that can be used to generate valid approximations: the “Bethe method, ” the “junction graph method, ” the “cluster variation method, ” and the “region graph method.” Finally, we explain how to tell whether a region-based approximation, and its corresponding GBP algorithm, is likely to be accurate, and describe empirical results showing that GBP can significantly outperform BP.
Parameterisation of a Stochastic Model for Human Face Identification
, 1994
"... Recent work on face identification using continuous density Hidden Markov Models (HMMs) has shown that stochastic modelling can be used successfully to encode feature information. When frontal images of faces are sampled using top-bottom scanning, there is a natural order in which the features appe ..."
Abstract
-
Cited by 398 (0 self)
- Add to MetaCart
Recent work on face identification using continuous density Hidden Markov Models (HMMs) has shown that stochastic modelling can be used successfully to encode feature information. When frontal images of faces are sampled using top-bottom scanning, there is a natural order in which the features appear and this can be conveniently modelled using a top-bottom HMM. However, a top-bottom HMM is characterised by different parameters, the choice of which has so far been based on subjective intuition. This paper presents a set of experimental results in which various HMM parameterisations are analysed.
Closest Point Search in Lattices
- IEEE TRANS. INFORM. THEORY
, 2000
"... In this semi-tutorial paper, a comprehensive survey of closest-point search methods for lattices without a regular structure is presented. The existing search strategies are described in a unified framework, and differences between them are elucidated. An efficient closest-point search algorithm, ba ..."
Abstract
-
Cited by 333 (2 self)
- Add to MetaCart
(Show Context)
In this semi-tutorial paper, a comprehensive survey of closest-point search methods for lattices without a regular structure is presented. The existing search strategies are described in a unified framework, and differences between them are elucidated. An efficient closest-point search algorithm, based on the Schnorr-Euchner variation of the Pohst method, is implemented. Given an arbitrary point x 2 R m and a generator matrix for a lattice , the algorithm computes the point of that is closest to x. The algorithm is shown to be substantially faster than other known methods, by means of a theoretical comparison with the Kannan algorithm and an experimental comparison with the Pohst algorithm and its variants, such as the recent Viterbo-Boutros decoder. The improvement increases with the dimension of the lattice. Modifications of the algorithm are developed to solve a number of related search problems for lattices, such as finding a shortest vector, determining the kissing number, compu...
Hidden Markov processes
- IEEE Trans. Inform. Theory
, 2002
"... Abstract—An overview of statistical and information-theoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discrete-time finite-state homogeneous Markov chain observed through a discrete-time memoryless invariant channel. In recent years, the work of Baum and Petrie on finite- ..."
Abstract
-
Cited by 264 (5 self)
- Add to MetaCart
(Show Context)
Abstract—An overview of statistical and information-theoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discrete-time finite-state homogeneous Markov chain observed through a discrete-time memoryless invariant channel. In recent years, the work of Baum and Petrie on finite-state finite-alphabet HMPs was expanded to HMPs with finite as well as continuous state spaces and a general alphabet. In particular, statistical properties and ergodic theorems for relative entropy densities of HMPs were developed. Consistency and asymptotic normality of the maximum-likelihood (ML) parameter estimator were proved under some mild conditions. Similar results were established for switching autoregressive processes. These processes generalize HMPs. New algorithms were developed for estimating the state, parameter, and order of an HMP, for universal coding and classification of HMPs, and for universal decoding of hidden Markov channels. These and other related topics are reviewed in this paper. Index Terms—Baum–Petrie algorithm, entropy ergodic theorems, finite-state channels, hidden Markov models, identifiability, Kalman filter, maximum-likelihood (ML) estimation, order estimation, recursive parameter estimation, switching autoregressive processes, Ziv inequality. I.
Learning String Edit Distance
, 1997
"... In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is the edit distance: the minimum number of insertions, deletions, and substitutions required to transform one string into the other. In this report, we provide a stochastic mo ..."
Abstract
-
Cited by 252 (2 self)
- Add to MetaCart
In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is the edit distance: the minimum number of insertions, deletions, and substitutions required to transform one string into the other. In this report, we provide a stochastic model for string edit distance. Our stochastic model allows us to learn a string edit distance function from a corpus of examples. We illustrate the utility of our approach by applying it to the difficult problem of learning the pronunciation of words in conversational speech. In this application, we learn a string edit distance with nearly one fifth the error rate of the untrained Levenshtein distance. Our approach is applicable to any string classification problem that may be solved using a similarity function against a database of labeled prototypes.
Continuous Speech Recognition by Statistical Methods
- Proceedings of the IEEE 64
, 1976
"... HIS PAPER DESCRIBES statistical methods of auto-matic recognition (transcription) of continuous speech that have been used successfully by the Speech Process-ing Group at the IBM Thomas J. Watson Research Center. The ..."
Abstract
-
Cited by 249 (1 self)
- Add to MetaCart
HIS PAPER DESCRIBES statistical methods of auto-matic recognition (transcription) of continuous speech that have been used successfully by the Speech Process-ing Group at the IBM Thomas J. Watson Research Center. The