Results 1  10
of
172
An Introduction to Quantum Computing for NonPhysicists
 Los Alamos Physics Preprint Archive http://xxx.lanl.gov/abs/quantph/9809016
, 2000
"... ..."
Proof of security of quantum key distribution with twoway classical communications
, 2002
"... ..."
Authentication of Quantum Messages
, 2002
"... Authentication is a wellstudied area of classical cryptography: a sender A and a receiver B sharing a classical private key want to exchange a classical message with the guarantee that the message has not been modified or replaced by a dishonest party with control of the communication line. In th ..."
Abstract

Cited by 59 (9 self)
 Add to MetaCart
(Show Context)
Authentication is a wellstudied area of classical cryptography: a sender A and a receiver B sharing a classical private key want to exchange a classical message with the guarantee that the message has not been modified or replaced by a dishonest party with control of the communication line. In this paper we study the authentication of messages composed of quantum states.
The universal composable security of quantum key distribution
 Theory of Cryptography: Second Theory of Cryptography Conference, volume 3378 of Lecture
, 2005
"... The existing unconditional security definitions of quantum key distribution (QKD) do not apply to joint attacks over QKD and the subsequent use of the resulting key. In this paper, we close this potential security gap by using a universal composability theorem for the quantum setting. We first deriv ..."
Abstract

Cited by 51 (3 self)
 Add to MetaCart
(Show Context)
The existing unconditional security definitions of quantum key distribution (QKD) do not apply to joint attacks over QKD and the subsequent use of the resulting key. In this paper, we close this potential security gap by using a universal composability theorem for the quantum setting. We first derive a composable security definition for QKD. We then prove that the usual security definition of QKD still implies the composable security definition. Thus, a key produced in any QKD protocol that is unconditionally secure in the usual definition can indeed be safely used, a property of QKD that is hitherto unproven. We propose two other useful sufficient conditions for composability. As a simple application of our result, we show that keys generated by repeated runs of QKD degrade slowly. 1
Efficient Quantum Key Distribution Scheme And Proof of Its Unconditional Security
 Cryptology, ISSN: 09332790 (Paper) 14321378 (Online) published online 3 March 2004, (10.1007/s001450040142y). (SpringerVerlag
"... We devise a simple modification that essentially doubles the efficiency of the BB84 quantum key distribution scheme proposed by Bennett and Brassard. We also prove the security of our modified scheme against the most general eavesdropping attack that is allowed by the laws of physics. The first majo ..."
Abstract

Cited by 47 (10 self)
 Add to MetaCart
(Show Context)
We devise a simple modification that essentially doubles the efficiency of the BB84 quantum key distribution scheme proposed by Bennett and Brassard. We also prove the security of our modified scheme against the most general eavesdropping attack that is allowed by the laws of physics. The first major ingredient of our scheme is the assignment of significantly different probabilities to the different polarization bases during both transmission and reception, thus reducing the fraction of discarded data. A second major ingredient of our scheme is a refined analysis of accepted data: We separate the accepted data into various subsets according to the basis employed and estimate an error rate for each subset separately. We then show that such a refined data analysis guarantees the security of our scheme against the most general eavesdropping strategy, thus generalizing Shor and Preskill’s proof of security of BB84 to our new scheme. Up till now, most proposed proofs of security of singleparticle type quantum key distribution schemes have relied heavily upon the fact that the bases are chosen uniformly, randomly and independently. Our proof removes this symmetry requirement.
A new protocol and lower bounds for quantum coin flipping
 In Proceedings of the ThirtyThird Annual ACM Symposium on Theory of Computing
, 2001
"... We present a new protocol and two lower bounds for quantum coin flipping. In our protocol, no dishonest party can achieve one outcome with probability more than 0.75. Then, we show that our protocol is optimal for a certain type of quantum protocols. For arbitrary quantum protocols, we show that if ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
We present a new protocol and two lower bounds for quantum coin flipping. In our protocol, no dishonest party can achieve one outcome with probability more than 0.75. Then, we show that our protocol is optimal for a certain type of quantum protocols. For arbitrary quantum protocols, we show that if a protocol achieves a bias of at most ǫ, it must use at least Ω(log log 1 ǫ) rounds of communication. This implies that the parallel repetition fails for quantum coin flipping. (The bias of a protocol cannot be arbitrarily decreased by running several copies of it in parallel.) 1
Quantum data hiding
 IEEE Trans. Inf. Theory
"... Abstract — We expand on our work on Quantum Data Hiding [1] – hiding classical data among parties who are restricted to performing only local quantum operations and classical communication (LOCC). We review our scheme that hides one bit between two parties using Bell states, and we derive upper and ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
(Show Context)
Abstract — We expand on our work on Quantum Data Hiding [1] – hiding classical data among parties who are restricted to performing only local quantum operations and classical communication (LOCC). We review our scheme that hides one bit between two parties using Bell states, and we derive upper and lower bounds on the secrecy of the hiding scheme. We provide an explicit bound showing that multiple bits can be hidden bitwise with our scheme. We give a preparation of the hiding states as an efficient quantum computation that uses at most one ebit of entanglement. A candidate data hiding scheme that does not use entanglement is presented. We show how our scheme for quantum data hiding can be used in a conditionally secure quantum bit commitment scheme.
Information and Computation: Classical and Quantum Aspects
 REVIEWS OF MODERN PHYSICS
, 2001
"... Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as a few samples of the impact of quanta in the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement in information processing by a quantum computer. We provide finally some examples of current experimental