Results 1  10
of
199
What energy functions can be minimized via graph cuts?
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are co ..."
Abstract

Cited by 1047 (23 self)
 Add to MetaCart
In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a generalpurpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.
PseudoBoolean Optimization
 DISCRETE APPLIED MATHEMATICS
, 2001
"... This survey examines the state of the art of a variety of problems related to pseudoBoolean optimization, i.e. to the optimization of set functions represented by closed algebraic expressions. The main parts of the survey examine general pseudoBoolean optimization, the specially important case of ..."
Abstract

Cited by 183 (5 self)
 Add to MetaCart
This survey examines the state of the art of a variety of problems related to pseudoBoolean optimization, i.e. to the optimization of set functions represented by closed algebraic expressions. The main parts of the survey examine general pseudoBoolean optimization, the specially important case of quadratic pseudoBoolean optimization (to which every pseudoBoolean optimization can be reduced), several other important special classes, and approximation algorithms.
A.Blake. Cosegmentation of image pairs by histogram matching  incorporating a global constraint into MRFs
 In CVPR
, 2006
"... We introduce the term cosegmentation which denotes the task of segmenting simultaneously the common parts of an image pair. A generative model for cosegmentation is presented. Inference in the model leads to minimizing an energy with an MRF term encoding spatial coherency and a global constraint whi ..."
Abstract

Cited by 177 (3 self)
 Add to MetaCart
(Show Context)
We introduce the term cosegmentation which denotes the task of segmenting simultaneously the common parts of an image pair. A generative model for cosegmentation is presented. Inference in the model leads to minimizing an energy with an MRF term encoding spatial coherency and a global constraint which attempts to match the appearance histograms of the common parts. This energy has not been proposed previously and its optimization is challenging and NPhard. For this problem a novel optimization scheme which we call trust region graph cuts is presented. We demonstrate that this framework has the potential to improve a wide range of research: Object driven image retrieval, video tracking and segmentation, and interactive image editing. The power of the framework lies in its generality, the common part can be a rigid/nonrigid object (or scene), observed from different viewpoints or even similar objects of the same class. 1.
Maximizing nonmonotone submodular functions
 In Proceedings of 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS
, 2007
"... Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular fu ..."
Abstract

Cited by 145 (17 self)
 Add to MetaCart
Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular functions is NPhard. In this paper, we design the first constantfactor approximation algorithms for maximizing nonnegative submodular functions. In particular, we give a deterministic local search 1 2approximation and a randomizedapproximation algo
Approximation algorithms for combinatorial auctions with complementfree bidders
 In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC
, 2005
"... We exhibit three approximation algorithms for the allocation problem in combinatorial auctions with complement free bidders. The running time of these algorithms is polynomial in the number of items m and in the number of bidders n, even though the “input size ” is exponential in m. The first algori ..."
Abstract

Cited by 137 (27 self)
 Add to MetaCart
(Show Context)
We exhibit three approximation algorithms for the allocation problem in combinatorial auctions with complement free bidders. The running time of these algorithms is polynomial in the number of items m and in the number of bidders n, even though the “input size ” is exponential in m. The first algorithm provides an O(log m) approximation. The second algorithm provides an O ( √ m) approximation in the weaker model of value oracles. This algorithm is also incentive compatible. The third algorithm provides an improved 2approximation for the more restricted case of “XOS bidders”, a class which strictly contains submodular bidders. We also prove lower bounds on the possible approximations achievable for these classes of bidders. These bounds are not tight and we leave the gaps as open problems. 1
Optimal Approximation for the Submodular Welfare Problem in the value oracle model
 STOC'08
, 2008
"... In the Submodular Welfare Problem, m items are to be distributed among n players with utility functions wi: 2 [m] → R+. The utility functions are assumed to be monotone and submodular. Assuming that player i receives a set of items Si, we wish to maximize the total utility Pn i=1 wi(Si). In this pap ..."
Abstract

Cited by 122 (11 self)
 Add to MetaCart
In the Submodular Welfare Problem, m items are to be distributed among n players with utility functions wi: 2 [m] → R+. The utility functions are assumed to be monotone and submodular. Assuming that player i receives a set of items Si, we wish to maximize the total utility Pn i=1 wi(Si). In this paper, we work in the value oracle model where the only access to the utility functions is through a black box returning wi(S) for a given set S. Submodular Welfare is in fact a special case of the more general problem of submodular maximization subject to a matroid constraint: max{f(S) : S ∈ I}, where f is monotone submodular and I is the collection of independent sets in some matroid. For both problems, a greedy algorithm is known to yield a 1/2approximation [21, 16]. In special cases where the matroid is uniform (I = {S: S  ≤ k}) [20] or the submodular function is of a special type [4, 2], a (1 − 1/e)approximation has been achieved and this is optimal for these problems in the value oracle model [22, 6, 15]. A (1 − 1/e)approximation for the general Submodular Welfare Problem has been known only in a stronger demand oracle model [4], where in fact 1 − 1/e can be improved [9]. In this paper, we develop a randomized continuous greedy algorithm which achieves a (1 − 1/e)approximation for the Submodular Welfare Problem in the value oracle model. We also show that the special case of n equal players is approximation resistant, in the sense that the optimal (1 − 1/e)approximation is achieved by a uniformly random solution. Using the pipage rounding technique [1, 2], we obtain a (1 − 1/e)approximation for submodular maximization subject to any matroid constraint. The continuous greedy algorithm has a potential of wider applicability, which we demonstrate on the examples of the Generalized Assignment Problem and the AdWords Assignment Problem.
A Combinatorial, Strongly PolynomialTime Algorithm for Minimizing Submodular Functions
, 2000
"... algorithm for minimizing submodular functions, answering an open question posed in 1981 by GrStschel, Lovsz, and Schrijver. The algorithm employs a scaling scheme that uses a flow in the complete directed graph on the underlying set with each arc capacity equal to the scaled parameter. The resulting ..."
Abstract

Cited by 73 (5 self)
 Add to MetaCart
(Show Context)
algorithm for minimizing submodular functions, answering an open question posed in 1981 by GrStschel, Lovsz, and Schrijver. The algorithm employs a scaling scheme that uses a flow in the complete directed graph on the underlying set with each arc capacity equal to the scaled parameter. The resulting algorithm runs in time bounded by a polynomial in the size of the underlying set and the largest length of the function value. The paper also presents a strongly polynomialtime version that runs in time bounded by a polynomial in the size of the underlying set independent of the function value.
A fully combinatorial algorithm for submodular function minimization
 J. COMBIN. THEORY
"... This paper presents a new simple algorithm for minimizing submodular functions. For integer valued submodular functions, the algorithm runs in O(n6EO log nM) time, where n is the cardinality of the ground set, M is the maximum absolute value of the function value, and EO is the time for function eva ..."
Abstract

Cited by 64 (7 self)
 Add to MetaCart
(Show Context)
This paper presents a new simple algorithm for minimizing submodular functions. For integer valued submodular functions, the algorithm runs in O(n6EO log nM) time, where n is the cardinality of the ground set, M is the maximum absolute value of the function value, and EO is the time for function evaluation. The algorithm can be improved to run in O((n4EO+n 5) log nM) time. The strongly polynomial version of this faster algorithm runs in O((n5EO + n6) log n) time for real valued general submodular functions. These are comparable to the best known running time bounds for submodular function minimization. The algorithm can also be implemented in strongly polynomial time using only additions, subtractions, comparisons, and the oracle calls for function evaluation. This is the first fully combinatorial submodular function minimization algorithm that does not rely on the scaling method.