Results 1  10
of
238
The price of stability for network design with fair cost allocation
 In Proceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS
, 2004
"... Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite differ ..."
Abstract

Cited by 279 (27 self)
 Add to MetaCart
(Show Context)
Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite different from the centrally enforced optimum. We study the quality of the best Nash equilibrium, and refer to the ratio of its cost to the optimum network cost as the price of stability. The best Nash equilibrium solution has a natural meaning of stability in this context — it is the optimal solution that can be proposed from which no user will defect. We consider the price of stability for network design with respect to one of the most widelystudied protocols for network cost allocation, in which the cost of each edge is divided equally between users whose connections make use of it; this fairdivision scheme can be derived from the Shapley value, and has a number of basic economic motivations. We show that the price of stability for network design with respect to this fair cost allocation is O(log k), where k is the number of users, and that a good Nash equilibrium can be achieved via bestresponse dynamics in which users iteratively defect from a starting solution. This establishes that the fair cost allocation protocol is in fact a useful mechanism for inducing strategic behavior to form nearoptimal equilibria. We discuss connections to the class of potential games defined by Monderer and Shapley, and extend our results to cases in which users are seeking to balance network design costs with latencies in the constructed network, with stronger results when the network has only delays and no construction costs. We also present bounds on the convergence time of bestresponse dynamics, and discuss extensions to a weighted game.
Selfish Routing and the Price of Anarchy
 MATHEMATICAL PROGRAMMING SOCIETY NEWSLETTER
, 2007
"... Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this in ..."
Abstract

Cited by 252 (11 self)
 Add to MetaCart
(Show Context)
Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this inefficiency. We survey recent work that analyzes the price of anarchy of selfish routing. We also describe related results on bounding the worstpossible severity of a phenomenon called Braess’s Paradox, and on three techniques for reducing the price of anarchy of selfish routing. This survey concentrates on the contributions of the author’s PhD thesis, but also discusses several more recent results in the area.
Efficiency Loss in a Network Resource Allocation Game: The Case of Elastic Supply
, 2008
"... We consider a resource allocation problem where individual users wish to send data across a network to maximize their utility, and a cost is incurred at each link that depends on the total rate sent through the link. It is known that as long as users do not anticipate the effect of their actions on ..."
Abstract

Cited by 211 (13 self)
 Add to MetaCart
We consider a resource allocation problem where individual users wish to send data across a network to maximize their utility, and a cost is incurred at each link that depends on the total rate sent through the link. It is known that as long as users do not anticipate the effect of their actions on prices, a simple proportional pricing mechanism can maximize the sum of users’ utilities minus the cost (called aggregate surplus). Continuing previous efforts to quantify the effects of selfish behavior in network pricing mechanisms, we consider the possibility that users anticipate the effect of their actions on link prices. Under the assumption that the links’ marginal cost functions are convex, we establish existence of a Nash equilibrium. We show that the aggregate surplus at a Nash equilibrium is no worse than a factor of 4 √ 2 − 5 times the optimal aggregate surplus; thus, the efficiency loss when users are selfish is no more than approximately 34%.
The Complexity of Pure Nash Equilibria
, 2004
"... We investigate from the computational viewpoint multiplayer games that are guaranteed to have pure Nash equilibria. We focus on congestion games, and show that a pure Nash equilibrium can be computed in polynomial time in the symmetric network case, while the problem is PLScomplete in general. ..."
Abstract

Cited by 172 (6 self)
 Add to MetaCart
(Show Context)
We investigate from the computational viewpoint multiplayer games that are guaranteed to have pure Nash equilibria. We focus on congestion games, and show that a pure Nash equilibrium can be computed in polynomial time in the symmetric network case, while the problem is PLScomplete in general. We discuss implications to nonatomic congestion games, and we explore the scope of the potential function method for proving existence of pure Nash equilibria.
Nearoptimal network design with selfish agents
, 2003
"... We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possi ..."
Abstract

Cited by 156 (19 self)
 Add to MetaCart
(Show Context)
We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possible edges in the network have costs and each agent’s goal is to pay as little as possible. Determining whether or not a Nash equilibrium exists in this game is NPcomplete. However, when the goal of each player is to connect a terminal to a common source, we prove that there is a Nash equilibrium as cheap as the optimal network, and give a polynomial time algorithmtofinda(1+ε)approximate Nash equilibrium that does not cost much more. For the general connection game we prove that there is a 3approximate Nash equilibrium that is as cheap as the optimal network, and give an algorithm to find a (4.65 +ε)approximate Nash equilibrium that does not cost much more.
Intrinsic Robustness of the Price of Anarchy
"... The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium ..."
Abstract

Cited by 99 (11 self)
 Add to MetaCart
(Show Context)
The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium. This drawback motivates the search for inefficiency bounds that apply more generally to weaker notions of equilibria, such as mixed Nash and correlated equilibria; or to sequences of outcomes generated by natural experimentation strategies, such as successive best responses or simultaneous regretminimization. We prove a general and fundamental connection between the price of anarchy and its seemingly stronger relatives in classes of games with a sum objective. First, we identify a “canonical sufficient condition ” for an upper bound of the POA for pure Nash equilibria, which we call a smoothness argument. Second, we show that every bound derived via a smoothness argument extends automatically, with no quantitative degradation in the bound, to mixed Nash equilibria, correlated equilibria, and the average objective function value of regretminimizing players (or “price of total anarchy”). Smoothness arguments also have automatic implications for the inefficiency of approximate and BayesianNash equilibria and, under mild additional assumptions, for bicriteria bounds and for polynomiallength bestresponse sequences. We also identify classes of games — most notably, congestion games with cost functions restricted to an arbitrary fixed set — that are tight, in the sense that smoothness arguments are guaranteed to produce an optimal worstcase upper bound on the POA, even for the smallest set of interest (pure Nash equilibria). Byproducts of our proof of this result include the first tight bounds on the POA in congestion games with nonpolynomial cost functions, and the first
Energyefficient algorithms for flow time minimization
 In Proc. of STACS 2006
"... Topic classification: Algorithms and data structures We study scheduling problems in batteryoperated computing devices, aiming at schedules with low total energy consumption. While most of the previous work has focused on finding feasible schedules in deadlinebased settings, in this paper we are i ..."
Abstract

Cited by 95 (4 self)
 Add to MetaCart
(Show Context)
Topic classification: Algorithms and data structures We study scheduling problems in batteryoperated computing devices, aiming at schedules with low total energy consumption. While most of the previous work has focused on finding feasible schedules in deadlinebased settings, in this paper we are interested in schedules that guarantee a good QualityofService. More specifically, our goal is to schedule a sequence of jobs on a variable speed processor so as to minimize the total cost consisting of the power consumption and the total flow time of all the jobs. We first show that when the amount of work, for any job, may take an arbitrary value, then no online algorithm can achieve a constant competitive ratio. Therefore, most of the paper is concerned with unitsize jobs. We devise a deterministic constant competitive online algorithm and show that the offline problem can be solved in polynomial time. 1
On Nash equilibria for a network creation game
 In Proc. of SODA
, 2006
"... We study a network creation game recently proposed by Fabrikant, Luthra, Maneva, Papadimitriou and Shenker. In this game, each player (vertex) can create links (edges) to other players at a cost of α per edge. The goal of every player is to minimize the sum consisting of (a) the cost of the links he ..."
Abstract

Cited by 88 (7 self)
 Add to MetaCart
(Show Context)
We study a network creation game recently proposed by Fabrikant, Luthra, Maneva, Papadimitriou and Shenker. In this game, each player (vertex) can create links (edges) to other players at a cost of α per edge. The goal of every player is to minimize the sum consisting of (a) the cost of the links he has created and (b) the sum of the distances to all other players. Fabrikant et al. conjectured that there exists a constant A such that, for any α> A, all nontransient Nash equilibria graphs are trees. They showed that if a Nash equilibrium is a tree, the price of anarchy is constant. In this paper we disprove the tree conjecture. More precisely, we show that for any positive integer n0, there exists a graph built by n ≥ n0 players which contains cycles and forms a nontransient
On spectrum sharing games
 In proc. of PODC 2004
, 2004
"... Each access point (AP) in a WiFi network must be assigned a channel for it to service users. There are only finitely many possible channels that can be assigned. Moreover, neighboring access points must use different channels so as to avoid interference. Currently these channels are assigned by admi ..."
Abstract

Cited by 78 (3 self)
 Add to MetaCart
(Show Context)
Each access point (AP) in a WiFi network must be assigned a channel for it to service users. There are only finitely many possible channels that can be assigned. Moreover, neighboring access points must use different channels so as to avoid interference. Currently these channels are assigned by administrators who carefully consider channel conflicts and network loads. Channel conflicts among APs operated by different entities are currently resolved in an ad hoc manner or not resolved at all. We view the channel assignment problem as a game, where the players are the service providers and APs are acquired sequentially. We consider the price of anarchy of this game, which is the ratio between the total coverage of the APs in the worst Nash equilibrium of the game and what the total coverage of the APs would be if the channel assignment were done by a central authority. We provide bounds on the price of anarchy depending on assumptions on the underlying network and the type of bargaining allowed between service providers. The key tool in the analysis is the identification of the Nash equilibria with the solutions to a maximal coloring problem in an appropriate graph. We relate the price of anarchy of these games to the approximation factor of local optimization algorithms for the maximum�colorable subgraph problem. We also study the speed of convergence in these games.
The price of selfish behavior in bilateral network formation
 In Proceedings of the twentyfourth annual ACM symposium on Principles of distributed computing
, 2005
"... Given a collection of selfish agents who wish to establish links to route traffic among themselves, the set of equilibrium network topologies may appear quite different from the centrally enforced optimum. We study the quality (price of anarchy) of equilibrium networks in a game where links require ..."
Abstract

Cited by 78 (0 self)
 Add to MetaCart
(Show Context)
Given a collection of selfish agents who wish to establish links to route traffic among themselves, the set of equilibrium network topologies may appear quite different from the centrally enforced optimum. We study the quality (price of anarchy) of equilibrium networks in a game where links require the consent of both participants and are negotiated bilaterally, and compare these networks to those generated by an earlier model due to Fabrikant et al. [10] in which links are formed unilaterally. We provide a partial characterization of stable and efficient networks in the bilateral network formation game, and provide examples of stable networks that are not Nash graphs in the unilateral game. We develop an upper and lower bound on the price of anarchy of the bilateral game. An empirical analysis demonstrates that the average price of anarchy is better in the bilateral connection game