Results 1 - 10
of
173
Intrinsic motivation systems for autonomous mental development
- IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 2007
"... Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this dr ..."
Abstract
-
Cited by 255 (56 self)
- Add to MetaCart
(Show Context)
Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing related research coming from developmental psychology, neuroscience, developmental robotics, and active learning, this paper presents the mechanism of Intelligent Adaptive Curiosity, an intrinsic motivation system which pushes a robot towards situations in which it maximizes its learning progress. This drive makes the robot focus on situations which are neither too predictable nor too unpredictable, thus permitting autonomous mental development. The complexity of the robot’s activities autonomously increases and complex developmental sequences self-organize without
Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990-2010)
"... The simple but general formal theory of fun & intrinsic motivation & creativity (1990-) is based on the concept of maximizing intrinsic reward for the active creation or discovery of novel, surprising patterns allowing for improved prediction or data compression. It generalizes the traditio ..."
Abstract
-
Cited by 75 (16 self)
- Add to MetaCart
(Show Context)
The simple but general formal theory of fun & intrinsic motivation & creativity (1990-) is based on the concept of maximizing intrinsic reward for the active creation or discovery of novel, surprising patterns allowing for improved prediction or data compression. It generalizes the traditional field of active learning, and is related to old but less formal ideas in aesthetics theory and developmental psychology. It has been argued that the theory explains many essential aspects of intelligence including autonomous development, science, art, music, humor. This overview first describes theoretically optimal (but not necessarily practical) ways of implementing the basic computational principles on exploratory, intrinsically motivated agents or robots, encouraging them to provoke event sequences exhibiting previously unknown but learnable algorithmic regularities. Emphasis is put on the importance of limited computational resources for online prediction and compression. Discrete and continuous time formulations are given. Previous practical but non-optimal implementations (1991, 1995, 1997-2002) are reviewed, as well as several recent variants by others (2005-). A simplified typology addresses current confusion concerning the precise nature of intrinsic motivation.
Intrinsically Motivated Reinforcement Learning: An Evolutionary Perspective
- IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT
"... There is great interest in building intrinsic motivation into artificial systems using the reinforcement learning framework. Yet, what intrinsic motivation may mean computationally, and how it may differ from extrinsic motivation, remains a murky and controversial subject. In this article, we adopt ..."
Abstract
-
Cited by 66 (9 self)
- Add to MetaCart
(Show Context)
There is great interest in building intrinsic motivation into artificial systems using the reinforcement learning framework. Yet, what intrinsic motivation may mean computationally, and how it may differ from extrinsic motivation, remains a murky and controversial subject. In this article, we adopt an evolutionary perspective and define a new optimal reward framework that captures the pressure to design good primary reward functions that lead to evolutionary success across environments. The results of two computational experiments show that optimal primary reward signals may yield both emergent intrinsic and extrinsic motivation. The evolutionary perspective and the associated optimal reward framework thus lead to the conclusion that there are no hard and fast features distinguishing intrinsic and extrinsic reward computationally. Rather, the directness of the relationship between rewarding behavior and evolutionary success varies along a continuum.
Developmental Robotics, Optimal Artificial Curiosity, Creativity, Music, and the Fine Arts
, 2006
"... Even in absence of external reward, babies and scientists and others explore their world. Using some sort of adaptive predictive world model, they improve their ability to answer questions such as: what happens if I do this or that? They lose interest in both the predictable things and those predict ..."
Abstract
-
Cited by 66 (18 self)
- Add to MetaCart
Even in absence of external reward, babies and scientists and others explore their world. Using some sort of adaptive predictive world model, they improve their ability to answer questions such as: what happens if I do this or that? They lose interest in both the predictable things and those predicted to remain unpredictable despite some effort. One can design curious robots that do the same. The author’s basic idea for doing so (1990, 1991): a reinforcement learning (RL) controller is rewarded for action sequences that improve the predictor. Here this idea is revisited in the context of recent results on optimal predictors and optimal RL machines. Several new variants of the basic principle are proposed. Finally it is pointed out how the fine arts can be formally understood as a consequence of the principle: given some subjective observer, great works of art and music yield observation histories exhibiting more novel, previously unknown compressibility / regularity / predictability (with respect to the observer’s particular learning algorithm) than lesser works, thus deepening the observer’s understanding of the world and what is possible in it.
The Challenges of Joint Attention
- Interaction Studies
, 2004
"... This paper discusses the concept of joint attention and the di#erent skills underlying its development. We argue that joint attention is much more than gaze following or simultaneous looking because it implies a shared intentional relation to the world. The current state-of-the-art in robotic ..."
Abstract
-
Cited by 62 (7 self)
- Add to MetaCart
(Show Context)
This paper discusses the concept of joint attention and the di#erent skills underlying its development. We argue that joint attention is much more than gaze following or simultaneous looking because it implies a shared intentional relation to the world. The current state-of-the-art in robotic and computational models of the di#erent prerequisites of joint attention is discussed in relation with a developmental timeline drawn from results in child studies.
What is intrinsic motivation? A typology of computational approaches
, 2007
"... Intrinsic motivation, the causal mechanism for spontaneous exploration and curiosity, is a central concept in developmental psychology. It has been argued to be a crucial mechanism for open-ended cognitive development in humans, and as such has gathered a growing interest from developmental robotici ..."
Abstract
-
Cited by 58 (19 self)
- Add to MetaCart
Intrinsic motivation, the causal mechanism for spontaneous exploration and curiosity, is a central concept in developmental psychology. It has been argued to be a crucial mechanism for open-ended cognitive development in humans, and as such has gathered a growing interest from developmental roboticists in the recent years. The goal of this paper is threefold. First, it provides a synthesis of the different approaches of intrinsic motivation in psychology. Second, by interpreting these approaches in a computational reinforcement learning framework, we argue that they are not operational and even sometimes inconsistent. Third, we set the ground for a systematic operational study of intrinsic motivation by presenting a formal typology of possible computational approaches. This typology is partly based on existing computational models, but also presents new ways of conceptualizing intrinsic motivation. We argue that this kind of computational typology might be useful for opening new avenues for research both in psychology and developmental robotics.
Building portable options: Skill transfer in reinforcement learning
- Proceedings of the 20th International Joint Conference on Artificial Intelligence
, 2007
"... The options framework provides methods for reinforcement learning agents to build new high-level skills. However, since options are usually learned in the same state space as the problem the agent is solving, they cannot be used in other tasks that are similar but have different state spaces. We int ..."
Abstract
-
Cited by 57 (12 self)
- Add to MetaCart
(Show Context)
The options framework provides methods for reinforcement learning agents to build new high-level skills. However, since options are usually learned in the same state space as the problem the agent is solving, they cannot be used in other tasks that are similar but have different state spaces. We introduce the notion of learning options in agentspace, the space generated by a feature set that is present and retains the same semantics across successive problem instances, rather than in problemspace. Agent-space options can be reused in later tasks that share the same agent-space but have different problem-spaces. We present experimental results demonstrating the use of agent-space options in building transferrable skills, and show that they perform best when used in conjunction with problem-space options. 1
Discovering communication
- Connection Science
, 2006
"... What kind of motivation drives child language development? This article presents a computational model and a robotic experiment to articulate the hypothesis that children discover communication as a result of exploring and playing with their environment. The considered robotic agent is intrinsically ..."
Abstract
-
Cited by 56 (20 self)
- Add to MetaCart
(Show Context)
What kind of motivation drives child language development? This article presents a computational model and a robotic experiment to articulate the hypothesis that children discover communication as a result of exploring and playing with their environment. The considered robotic agent is intrinsically motivated towards situations in which it optimally progresses in learning. To experience optimal learning progress, it must avoid situations already familiar but also situations where nothing can be learnt. The robot is placed in an environment in which both communicating and non-communicating objects are present. As a consequence of its intrinsic motivation, the robot explores this environment in an organized manner focusing first on non-communicative activities and then discovering the learning potential of certain types of interactive behaviour. In this experiment, the agent ends up being interested by communication through vocal interactions without having a specific drive for communication.
Active learning of inverse models with intrinsically motivated goal exploration in robots
- ROBOTICS AND AUTONOMOUS SYSTEMS
, 2013
"... ..."
(Show Context)
R-IAC: Robust Intrinsically Motivated Exploration and Active Learning
- IEEE Transactions on Autonomous Mental Development
, 2009
"... Abstract—Intelligent adaptive curiosity (IAC) was initially introduced as a developmental mechanism allowing a robot to self-organize developmental trajectories of increasing complexity without preprogramming the particular developmental stages. In this paper, we argue that IAC and other intrinsical ..."
Abstract
-
Cited by 47 (12 self)
- Add to MetaCart
(Show Context)
Abstract—Intelligent adaptive curiosity (IAC) was initially introduced as a developmental mechanism allowing a robot to self-organize developmental trajectories of increasing complexity without preprogramming the particular developmental stages. In this paper, we argue that IAC and other intrinsically motivated learning heuristics could be viewed as active learning algorithms that are particularly suited for learning forward models in un-prepared sensorimotor spaces with large unlearnable subspaces. Then, we introduce a novel formulation of IAC, called robust intelligent adaptive curiosity (R-IAC), and show that its perfor-mances as an intrinsically motivated active learning algorithm are far superior to IAC in a complex sensorimotor space where only a small subspace is neither unlearnable nor trivial. We also show results in which the learnt forward model is reused in a control scheme. Finally, an open source accompanying software containing these algorithms as well as tools to reproduce all the experiments presented in this paper is made publicly available. Index Terms—Active learning, artificial curiosity, developmental robotics, exploration, intrinsic motivation, sensorimotor learning.