Results 1  10
of
36
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
(Show Context)
This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in smallworld networks, Markov processes and gossipbased algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with latticetype nearest neighbor interactions. Simulation results are presented that demonstrate the role of smallworld effects on the speed of consensus algorithms and cooperative control of multivehicle formations.
A Survey of Consensus Problems in Multiagent Coordination
, 2005
"... As a distributed solution to multiagent coordination, consensus or agreement problems have been studied extensively in the literature. This paper provides a survey of consensus problems in multiagent cooperative control with the goal of promoting research in this area. Theoretical results regard ..."
Abstract

Cited by 148 (3 self)
 Add to MetaCart
(Show Context)
As a distributed solution to multiagent coordination, consensus or agreement problems have been studied extensively in the literature. This paper provides a survey of consensus problems in multiagent cooperative control with the goal of promoting research in this area. Theoretical results regarding consensus seeking under both timeinvariant and dynamically changing information exchange topologies are summarized. Applications of consensus protocols to multiagent coordination are investigated. Future research directions and open problems are also proposed.
Stability of continuoustime distributed consensus algorithms
, 2004
"... We study the stability properties of linear timevarying systems in continuous time whose system matrix is Metzler with zero row sums. This class of systems arises naturally in the context of distributed decision problems, coordination and rendezvous tasks and synchronization problems. The equilibri ..."
Abstract

Cited by 135 (0 self)
 Add to MetaCart
(Show Context)
We study the stability properties of linear timevarying systems in continuous time whose system matrix is Metzler with zero row sums. This class of systems arises naturally in the context of distributed decision problems, coordination and rendezvous tasks and synchronization problems. The equilibrium set contains all states with identical state components. We present sufficient conditions guaranteeing uniform exponential stability of this equilibrium set, implying that all state components converge to a common value as time grows unbounded. Furthermore it is shown that this convergence result is robust with respect to an arbitrary delay, provided that the delay affects only the offdiagonal terms in the differential equation.
On the Stability of the Kuramoto Model of Coupled Nonlinear Oscillators
, 2005
"... We provide an analysis of the classic Kuramoto model of coupled nonlinear oscillators that goes beyond the existing results for alltoall networks of identical oscillators. Our work is applicable to oscillator networks of arbitrary interconnection topology with uncertain natural frequencies. Using ..."
Abstract

Cited by 107 (13 self)
 Add to MetaCart
We provide an analysis of the classic Kuramoto model of coupled nonlinear oscillators that goes beyond the existing results for alltoall networks of identical oscillators. Our work is applicable to oscillator networks of arbitrary interconnection topology with uncertain natural frequencies. Using tools from spectral graph theory and control theory, we prove that for couplings above a critical value, the synchronized state is locally asymptotically stable, resulting in convergence of all phase differences to a constant value, both in the case of identical natural frequencies as well as uncertain ones. We further explain the behavior of the system as the number of oscillators grows to infinity.
Stabilization of planar collective motion: alltoall communication
 IEEE TRANSACTIONS ON AUTOMATIC CONTROL
, 2007
"... This paper proposes a design methodology to stabilize isolated relative equilibria in a model of alltoall coupled identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or circular motio ..."
Abstract

Cited by 90 (32 self)
 Add to MetaCart
(Show Context)
This paper proposes a design methodology to stabilize isolated relative equilibria in a model of alltoall coupled identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or circular motion of all particles with fixed relative phases. The stabilizing feedbacks derive from Lyapunov functions that prove exponential stability and suggest almost global convergence properties. The results of the paper provide a loworder parametric family of stabilizable collectives that offer a set of primitives for the design of higherlevel tasks at the group level.
Stable concurrent synchronization in dynamic system networks
 Neural Networks
, 2007
"... In a network of dynamical systems, concurrent synchronization is a regime where multiple groups of fully synchronized elements coexist. In the brain, concurrent synchronization may occur at several scales, with multiple “rhythms ” interacting and functional assemblies combining neural oscillators of ..."
Abstract

Cited by 47 (23 self)
 Add to MetaCart
In a network of dynamical systems, concurrent synchronization is a regime where multiple groups of fully synchronized elements coexist. In the brain, concurrent synchronization may occur at several scales, with multiple “rhythms ” interacting and functional assemblies combining neural oscillators of many different types. Mathematically, stable concurrent synchronization corresponds to convergence to a flowinvariant linear subspace of the global state space. We derive a general condition for such convergence to occur globally and exponentially. We also show that, under mild conditions, global convergence to a concurrently synchronized regime is preserved under basic system combinations such as negative feedback or hierarchies, so that stable concurrently synchronized aggregates of arbitrary size can be constructed. Simple applications of these results to classical questions in systems neuroscience and robotics are discussed. 1
Natural frames and interacting particles in three dimensions
, 2005
"... Abstract — Motivated by the problem of formation control for vehicles moving at unit speed in threedimensional space, we are led to models of gyroscopically interacting particles, which require the machinery of curves and frames to describe and analyze. A Lie group formulation arises naturally, and ..."
Abstract

Cited by 43 (11 self)
 Add to MetaCart
(Show Context)
Abstract — Motivated by the problem of formation control for vehicles moving at unit speed in threedimensional space, we are led to models of gyroscopically interacting particles, which require the machinery of curves and frames to describe and analyze. A Lie group formulation arises naturally, and we discuss the general problem of determining (relative) equilibria for arbitrary Ginvariant controls (where G = SE(3) is a symmetry group for the control law). We then present global convergence (and noncollision) results for specific twovehicle interaction laws in three dimensions, which lead to specific formations (i.e., relative equilibria). Generalizations of the interaction laws to n vehicles is also discussed, and simulation results presented. I.
State agreement for continuoustime coupled nonlinear systems
 SIAM Journal on Control and Optimization
, 2007
"... Abstract. Two related problems are treated in continuous time. First, the state agreement problem is studied for coupled nonlinear differential equations. The vector fields can switch within a finite family. Associated to each vector field is a directed graph based in a natural way on the interactio ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
(Show Context)
Abstract. Two related problems are treated in continuous time. First, the state agreement problem is studied for coupled nonlinear differential equations. The vector fields can switch within a finite family. Associated to each vector field is a directed graph based in a natural way on the interaction structure of the subsystems. Generalizing the work of Moreau, under the assumption that the vector fields satisfy a certain subtangentiality condition, it is proved that asymptotic state agreement is achieved if and only if the dynamic interaction digraph has the property of being sufficiently connected over time. The proof uses nonsmooth analysis. Secondly, the rendezvous problem for kinematic pointmass mobile robots is studied when the robots ’ fields of view have a fixed radius. The circumcenter control law of Ando et al. [1] is shown to solve the problem. The rendezvous problem is a kind of state agreement problem, but the interaction structure is state dependent.
Distributed geodesic control laws for flocking of nonholonomic agents
 IEEE Transaction on Automatic Control
, 2005
"... Abstract—We study the problem of flocking and velocity alignment in a group of kinematic nonholonomic agents in 2 and 3 dimensions. By analyzing the velocity vectors of agents on a circle (for planar motion) or sphere (for 3D motion), we develop a geodesic control law that minimizes a misalignment ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
Abstract—We study the problem of flocking and velocity alignment in a group of kinematic nonholonomic agents in 2 and 3 dimensions. By analyzing the velocity vectors of agents on a circle (for planar motion) or sphere (for 3D motion), we develop a geodesic control law that minimizes a misalignment potential and results in velocity alignment and flocking. The proposed control laws are distributed and will provably result in flocking when the underlying proximity graph which represents the neighborhood relation among agents is connected. We further show that flocking is possible even when the topology of the proximity graph changes over time, so long as a weaker notion of joint connectivity is preserved. Index Terms—Cooperative control, distributed coordination, flocking, multiagent systems. I.
Collective Motion: Bistability and Trajectory Tracking
 in Proc. 43rd IEEE Conf. Decision and Control
, 2004
"... Abstract — This paper presents analysis and application of steering control laws for a network of selfpropelled, planar particles. We explore together the two stably controlled group motions, parallel motion and circular motion, for modeling and design purposes. We show that a previously considered ..."
Abstract

Cited by 27 (9 self)
 Add to MetaCart
(Show Context)
Abstract — This paper presents analysis and application of steering control laws for a network of selfpropelled, planar particles. We explore together the two stably controlled group motions, parallel motion and circular motion, for modeling and design purposes. We show that a previously considered control law simultaneously stabilizes both parallel and circular group motion, leading to bistability and hysteresis. We also present behavior primitives that enable piecewiselinear network trajectory tracking. I.