Results 1  10
of
313
Cooperative diversity in wireless networks: efficient protocols and outage behavior
 IEEE TRANS. INFORM. THEORY
, 2004
"... We develop and analyze lowcomplexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals’ relaying signals for one another. We outline several strategies ..."
Abstract

Cited by 2009 (31 self)
 Add to MetaCart
We develop and analyze lowcomplexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals’ relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplifyandforward and decodeandforward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signaltonoise ratio (SNR) regime. Except for fixed decodeandforward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., secondorder diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to halfduplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks—wherever space constraints preclude the use of physical arrays—the performance characterizations reveal that large power or energy savings result from the use of these protocols.
Cooperative strategies and capacity theorems for relay networks
 IEEE TRANS. INFORM. THEORY
, 2005
"... Coding strategies that exploit node cooperation are developed for relay networks. Two basic schemes are studied: the relays decodeandforward the source message to the destination, or they compressandforward their channel outputs to the destination. The decodeandforward scheme is a variant of ..."
Abstract

Cited by 739 (19 self)
 Add to MetaCart
Coding strategies that exploit node cooperation are developed for relay networks. Two basic schemes are studied: the relays decodeandforward the source message to the destination, or they compressandforward their channel outputs to the destination. The decodeandforward scheme is a variant of multihopping, but in addition to having the relays successively decode the message, the transmitters cooperate and each receiver uses several or all of its past channel output blocks to decode. For the compressandforward scheme, the relays take advantage of the statistical dependence between their channel outputs and the destination’s channel output. The strategies are applied to wireless channels, and it is shown that decodeandforward achieves the ergodic capacity with phase fading if phase information is available only locally, and if the relays are near the source node. The ergodic capacity coincides with the rate of a distributed antenna array with full cooperation even though the transmitting antennas are not colocated. The capacity results generalize broadly, including to multiantenna transmission with Rayleigh fading, singlebounce fading, certain quasistatic fading problems, cases where partial channel knowledge is available at the transmitters, and cases where local user cooperation is permitted. The results further extend to multisource and multidestination networks such as multiaccess and broadcast relay channels.
A Network Information Theory for Wireless Communication: Scaling Laws and Optimal Operation
 IEEE Transactions on Information Theory
, 2002
"... How much information can be carried over a wireless network with a multiplicity of nodes? What are the optimal strategies for information transmission and cooperation among the nodes? We obtain sharp information theoretic scaling laws under some conditions. ..."
Abstract

Cited by 362 (19 self)
 Add to MetaCart
(Show Context)
How much information can be carried over a wireless network with a multiplicity of nodes? What are the optimal strategies for information transmission and cooperation among the nodes? We obtain sharp information theoretic scaling laws under some conditions.
Capacity bounds and power allocation for wireless relay channels
 IEEE TRANS. INF. THEORY
, 2005
"... We consider threenode wireless relay channels in a Rayleighfading environment. Assuming transmitter channel state information (CSI), we study upper bounds and lower bounds on the outage capacity and the ergodic capacity. Our studies take into account practical constraints on the transmission/rece ..."
Abstract

Cited by 324 (6 self)
 Add to MetaCart
We consider threenode wireless relay channels in a Rayleighfading environment. Assuming transmitter channel state information (CSI), we study upper bounds and lower bounds on the outage capacity and the ergodic capacity. Our studies take into account practical constraints on the transmission/reception duplexing at the relay node and on the synchronization between the source node and the relay node. We also explore power allocation. Compared to the direct transmission and traditional multihop protocols, our results reveal that optimum relay channel signaling can significantly outperform multihop protocols, and that power allocation has a significant impact on the performance.
Wireless Network Information Flow: A Deterministic Approach
, 2009
"... In contrast to wireline networks, not much is known about the flow of information over wireless networks. The main barrier is the complexity of the signal interaction in wireless channels in addition to the noise in the channel. A widely accepted model is the the additive Gaussian channel model, and ..."
Abstract

Cited by 296 (42 self)
 Add to MetaCart
In contrast to wireline networks, not much is known about the flow of information over wireless networks. The main barrier is the complexity of the signal interaction in wireless channels in addition to the noise in the channel. A widely accepted model is the the additive Gaussian channel model, and for this model, the capacity of even a network with a single relay node is open for 30 years. In this paper, we present a deterministic approach to this problem by focusing on the signal interaction rather than the noise. To this end, we propose a deterministic channel model which is analytically simpler than the Gaussian model but still captures two key wireless channel properties of broadcast and superposition. We consider a model for a wireless relay network with nodes connected by such deterministic channels, and present an exact characterization of the endtoend capacity when there is a single source and one or more destinations (all interested in the same information) and an arbitrary number of relay nodes. This result is a natural generalization of the celebrated maxflow mincut theorem for wireline networks. We then use the insights obtained from the analysis of the deterministic model to study information flow for the Gaussian wireless relay network. We present an achievable rate for general Gaussian relay networks and show that it is within a constant number of bits from the cutset bound on the capacity of these networks. This constant depends on the number of nodes in the network, but not the values of the channel gains or the signaltonoise ratios. We show that existing strategies cannot achieve such a constantgap approximation for arbitrary networks and propose a new quantizemapandforward scheme that does. We also give several extensions of the approximation framework including robustness results (through compound channels), halfduplex constraints and ergodic channel variations.
Towards an Information Theory of Large Networks: An Achievable Rate Region
 IEEE Trans. Inform. Theory
, 2003
"... Abstract — We study communication networks of arbitrary size and topology and communicating over a general vector discrete memoryless channel. We propose an informationtheoretic constructive scheme for obtaining an achievable rate region in such networks. Many wellknown capacitydefining achievabl ..."
Abstract

Cited by 203 (12 self)
 Add to MetaCart
(Show Context)
Abstract — We study communication networks of arbitrary size and topology and communicating over a general vector discrete memoryless channel. We propose an informationtheoretic constructive scheme for obtaining an achievable rate region in such networks. Many wellknown capacitydefining achievable rate regions can be derived as special cases of the proposed scheme. A few such examples are the physically degraded and reverselydegraded relay channels, the Gaussian multipleaccess channel, and the Gaussian broadcast channel. The proposed scheme also leads to inner bounds for the multicast and allcast capacities. Applying the proposed scheme to a specific wireless network of nodes located in a region of unit area, we show that a transport capacity of ¡£ ¢ bitmeters/sec is feasible in a certain family of networks, as compared to the best possible transport capacity ¡£¢§ ¦ ¨ ¤ of bitmeters/sec in [16] where the receiver capabilities were limited. Even though the improvement is shown for a specific class of networks, a clear implication is that designing and employing more sophisticated multiuser coding schemes can provide sizable gains in at least some large wireless networks. Index Terms — Discrete memoryless channels, Gaussian channels, multiuser communications, network information theory,
Optimal design of nonregenerative MIMO wireless relays
 IEEE Trans. Wireless Commun
, 2007
"... Abstract — Given a multipleantenna source and a multipleantenna destination, a multipleantenna relay between the source and the destination is desirable under useful circumstances. A nonregenerative multipleantenna relay, also called nonregenerative MIMO (multiinput multioutput) relay, is de ..."
Abstract

Cited by 160 (10 self)
 Add to MetaCart
(Show Context)
Abstract — Given a multipleantenna source and a multipleantenna destination, a multipleantenna relay between the source and the destination is desirable under useful circumstances. A nonregenerative multipleantenna relay, also called nonregenerative MIMO (multiinput multioutput) relay, is designed to optimize the capacity between the source and the destination. Without a direct link between the source and the destination, the optimal canonical coordinates of the relay matrix are first established, and the optimal power allocations along these coordinates are then found. The system capacity with the optimal relay matrix is shown to be significantly higher than those with heuristic relay matrices. When a direct link is present, upper and lower bounds of the optimal system capacity are discussed. Index Terms — Multipleantenna relay, MIMO relay, nonregenerative relay, capacity analysis, optimal canonical coordinates, optimal power allocation. I.
The relayeavesdropper channel: Cooperation for secrecy
 IEEE Trans. on Inf. Theory
, 2006
"... This paper establishes the utility of user cooperation in facilitating secure wireless communications. In particular, the fourterminal relayeavesdropper channel is introduced and an outerbound on the optimal rateequivocation region is derived. Several cooperation strategies are then devised and ..."
Abstract

Cited by 158 (7 self)
 Add to MetaCart
This paper establishes the utility of user cooperation in facilitating secure wireless communications. In particular, the fourterminal relayeavesdropper channel is introduced and an outerbound on the optimal rateequivocation region is derived. Several cooperation strategies are then devised and the corresponding achievable rateequivocation region are characterized. Of particular interest is the novel NoiseForwarding (NF) strategy, where the relay node sends codewords independent of the source message to confuse the eavesdropper. This strategy is used to illustrate the deaf helper phenomenon, where the relay is able to facilitate secure communications while being totally ignorant of the transmitted messages. Furthermore, NF is shown to increase the secrecy capacity in the reversely degraded scenario, where the relay node fails to offer performance gains in the classical setting. The gain offered by the proposed cooperation strategies is then proved theoretically and validated numerically in the additive White Gaussian Noise (AWGN) channel. I.
Capacity of Wireless Erasure Networks
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 2006
"... In this paper, a special class of wireless networks, called wireless erasure networks, is considered. In these networks, each node is connected to a set of nodes by possibly correlated erasure channels. The network model incorporates the broadcast nature of the wireless environment by requiring eac ..."
Abstract

Cited by 149 (12 self)
 Add to MetaCart
In this paper, a special class of wireless networks, called wireless erasure networks, is considered. In these networks, each node is connected to a set of nodes by possibly correlated erasure channels. The network model incorporates the broadcast nature of the wireless environment by requiring each node to send the same signal on all outgoing channels. However, we assume there is no interference in reception. Such models are therefore appropriate for wireless networks where all information transmission is packetized and where some mechanism for interference avoidance is already built in. This paper looks at multicast problems over these networks. The capacity under the assumption that erasure locations on all the links of the network are provided to the destinations is obtained. It turns out that the capacity region has a nice maxflow mincut interpretation. The definition of cutcapacity in these networks incorporates the broadcast property of the wireless medium. It is further shown that linear coding at nodes in the network suffices to achieve the capacity region. Finally, the performance of different coding schemes in these networks when no side information is available to the destinations is analyzed.