Results 1  10
of
79
Black Hole Entropy Function, Attractors and Precision Counting of Microstates
, 2007
"... In these lecture notes we describe recent progress in our understanding of attractor mechanism and entropy of extremal black holes based on the entropy function formalism. We also describe precise computation of the microscopic degeneracy of a class of quarter BPS dyons in N = 4 supersymmetric strin ..."
Abstract

Cited by 324 (28 self)
 Add to MetaCart
(Show Context)
In these lecture notes we describe recent progress in our understanding of attractor mechanism and entropy of extremal black holes based on the entropy function formalism. We also describe precise computation of the microscopic degeneracy of a class of quarter BPS dyons in N = 4 supersymmetric string theories, and compare the statistical entropy of these dyons, expanded in inverse powers of electric and magnetic charges, with a similar expansion of the corresponding black hole entropy. This comparison is extended to include the contribution to the entropy from multicentered black holes as well.
Split States, Entropy Enigmas, Holes and Halos
, 2007
"... We investigate degeneracies of BPS states of Dbranes on compact CalabiYau manifolds. We develop a factorization formula for BPS indices using attractor flow trees associated to multicentered black hole bound states. This enables us to study background dependence of the BPS spectrum, to compute e ..."
Abstract

Cited by 235 (22 self)
 Add to MetaCart
We investigate degeneracies of BPS states of Dbranes on compact CalabiYau manifolds. We develop a factorization formula for BPS indices using attractor flow trees associated to multicentered black hole bound states. This enables us to study background dependence of the BPS spectrum, to compute explicitly exact indices of various nontrivial Dbrane systems, and to clarify the subtle relation of DonaldsonThomas invariants to BPS indices of stable D6D2D0 states, realized in supergravity as “hole halos. ” We introduce a convergent generating function for D4 indices in the large CY volume limit, and prove it can be written as a modular average of its polar part, generalizing the fareytail expansion of the elliptic genus. We show polar states are “split ” D6antiD6 bound states, and that the partition function factorizes accordingly, leading to a refined version of the OSV conjecture. This differs from the original conjecture in several aspects. In particular we obtain a nontrivial measure factor g −2 top e−K and find factorization requires a cutoff. We show that the main factor determining the cutoff and therefore the error is the existence of “swing states ” — D6 states which exist at large radius but do not form stable D6antiD6 bound states. We point out a likely breakdown of the OSV conjecture at small gtop (in the large background CY volume limit), due to the surprising phenomenon that for sufficiently large background Kähler moduli, a charge ΛΓ supporting single centered black holes of entropy ∼ Λ2S(Γ) also admits twocentered BPS black hole realizations whose entropy grows like Λ3 when Λ → ∞.
Macroscopic Entropy Formulae and NonHolomorphic Corrections for Supersymmetric Black Holes
, 1999
"... In fourdimensional N = 2 compactifications of string theory or Mtheory, modifications of the BekensteinHawking area law for black hole entropy in the presence of higherderivative interactions are crucial for finding agreement between the macroscopic entropy obtained from supergravity and sublead ..."
Abstract

Cited by 99 (8 self)
 Add to MetaCart
In fourdimensional N = 2 compactifications of string theory or Mtheory, modifications of the BekensteinHawking area law for black hole entropy in the presence of higherderivative interactions are crucial for finding agreement between the macroscopic entropy obtained from supergravity and subleading corrections to the microscopic entropy obtained via state counting. Here we compute the modifications to the area law for various classes of black holes, such as heterotic black holes, stemming from certain higherderivative gravitational Wilsonian coupling functions. We consider the extension to heterotic N = 4 supersymmetric black holes and their typeII duals and we discuss its implications for the corresponding microstate counting. In the effective field theory approach the Wilsonian coupling functions are known to receive nonholomorphic corrections. We discuss how to incorporate such corrections into macroscopic entropy formulae so as to render them invariant under duality transfo...
Exact and Asymptotic Degeneracies of Small Black Holes
, 2005
"... We examine the recently proposed relations between black hole entropy and the topological string in the context of type II/heterotic string dual models. We consider the degeneracies of perturbative heterotic BPS states. In several examples with N = 4 and N = 2 supersymmetry, we show that the macrosc ..."
Abstract

Cited by 80 (12 self)
 Add to MetaCart
We examine the recently proposed relations between black hole entropy and the topological string in the context of type II/heterotic string dual models. We consider the degeneracies of perturbative heterotic BPS states. In several examples with N = 4 and N = 2 supersymmetry, we show that the macroscopic degeneracy of small black holes agrees to all orders with the microscopic degeneracy, but misses nonperturbative corrections which are computable in the heterotic dual. Using these examples we refine the previous proposals and comment on their domain of validity as well as on the relevance of helicity supertraces.
Rotating Attractors
, 2006
"... We prove that, in a general higher derivative theory of gravity coupled to abelian gauge fields and neutral scalar fields, the entropy and the near horizon background of a rotating extremal black hole is obtained by extremizing an entropy function which depends only on the parameters labeling the ne ..."
Abstract

Cited by 63 (19 self)
 Add to MetaCart
We prove that, in a general higher derivative theory of gravity coupled to abelian gauge fields and neutral scalar fields, the entropy and the near horizon background of a rotating extremal black hole is obtained by extremizing an entropy function which depends only on the parameters labeling the near horizon background and the electric and magnetic charges and angular momentum carried by the black hole. If the entropy function has a unique extremum then this extremum must be independent of the asymptotic values of the moduli scalar fields and the solution exhibits attractor behaviour. If the entropy function has flat directions then the near horizon background is not uniquely determined by the extremization equations and could depend on the asymptotic data on the moduli fields, but the value of the entropy is still independent of this asymptotic data. We illustrate these results in the context of two derivative theories of gravity in several examples. These include Kerr black hole, KerrNewman black hole, black holes in KaluzaKlein theory, and
Lectures on on black holes, topological strings and quantum attractors
, 2006
"... Preprint typeset in JHEP style PAPER VERSION hepth/0607227 ..."
Abstract

Cited by 62 (10 self)
 Add to MetaCart
(Show Context)
Preprint typeset in JHEP style PAPER VERSION hepth/0607227