Results 1 - 10
of
398
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
"... Face recognition has benefitted greatly from the many databases that have been produced to study it. Most of these databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as posi ..."
Abstract
-
Cited by 449 (11 self)
- Add to MetaCart
(Show Context)
Face recognition has benefitted greatly from the many databases that have been produced to study it. Most of these databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as position, pose, lighting, expression, background, camera quality, occlusion, age, and gender. While there are many applications for face recognition technology in which one can control the parameters of image acquisition, there are also many applications in which the practitioner has little or no control over such parameters. This database is provided as an aid in studying the latter, unconstrained, face recognition problem. The database represents an initial attempt to provide a set of labeled face photographs spanning the range of conditions typically encountered by people in their everyday lives. The database exhibits “natural ” variability in pose, lighting, focus, resolution, facial expression, age, gender, race, accessories, make-up, occlusions, background, and photographic quality. Despite this variability, the images in the database are presented in a simple and consistent format for maximum ease of use. In addition to describing the details of the database and its acquisition, we provide specific experimental paradigms for which the database is suitable. This is done in an effort to make research performed with the database as consistent and comparable as possible.
Attribute and Simile Classifiers for Face Verification
- In IEEE International Conference on Computer Vision (ICCV
, 2009
"... We present two novel methods for face verification. Our first method – “attribute ” classifiers – uses binary classifiers trained to recognize the presence or absence of describable aspects of visual appearance (e.g., gender, race, and age). Our second method – “simile ” classifiers – removes the ma ..."
Abstract
-
Cited by 325 (14 self)
- Add to MetaCart
(Show Context)
We present two novel methods for face verification. Our first method – “attribute ” classifiers – uses binary classifiers trained to recognize the presence or absence of describable aspects of visual appearance (e.g., gender, race, and age). Our second method – “simile ” classifiers – removes the manual labeling required for attribute classification and instead learns the similarity of faces, or regions of faces, to specific reference people. Neither method requires costly, often brittle, alignment between image pairs; yet, both methods produce compact visual descriptions, and work on real-world images. Furthermore, both the attribute and simile classifiers improve on the current state-of-the-art for the LFW data set, reducing the error rates compared to the current best by 23.92 % and 26.34%, respectively, and 31.68 % when combined. For further testing across pose, illumination, and expression, we introduce a new data set – termed PubFig – of real-world images of public figures (celebrities and politicians) acquired from the internet. This data set is both larger (60,000 images) and deeper (300 images per individual) than existing data sets of its kind. Finally, we present an evaluation of human performance. 1.
Face recognition with local binary patterns
- In Proc. of 9th Euro15 We
"... Abstract. In this work, we present a novel approach to face recognition which considers both shape and texture information to represent face images. The face area is first divided into small regions from which Local Binary Pattern (LBP) histograms are extracted and concatenated into a single, spatia ..."
Abstract
-
Cited by 302 (15 self)
- Add to MetaCart
(Show Context)
Abstract. In this work, we present a novel approach to face recognition which considers both shape and texture information to represent face images. The face area is first divided into small regions from which Local Binary Pattern (LBP) histograms are extracted and concatenated into a single, spatially enhanced feature histogram efficiently representing the face image. The recognition is performed using a nearest neighbour classifier in the computed feature space with Chi square as a dissimilarity measure. Extensive experiments clearly show the superiority of the proposed scheme over all considered methods (PCA, Bayesian Intra/extrapersonal Classifier and Elastic Bunch Graph Matching) on FERET tests which include testing the robustness of the method against different facial expressions, lighting and aging of the subjects. In addition to its efficiency, the simplicity of the proposed method allows for very fast feature extraction. 1
Discriminant Analysis for Recognition of Human Face Images
- Journal of Optical Society of America A
, 1997
"... this paper we focus on featureextraction and face-identification processes ..."
Abstract
-
Cited by 258 (6 self)
- Add to MetaCart
this paper we focus on featureextraction and face-identification processes
Face Recognition: A Convolutional Neural Network Approach
- IEEE Transactions on Neural Networks
, 1997
"... Faces represent complex, multidimensional, meaningful visual stimuli and developing a computational model for face recognition is difficult [43]. We present a hybrid neural network solution which compares favorably with other methods. The system combines local image sampling, a self-organizing map n ..."
Abstract
-
Cited by 234 (0 self)
- Add to MetaCart
(Show Context)
Faces represent complex, multidimensional, meaningful visual stimuli and developing a computational model for face recognition is difficult [43]. We present a hybrid neural network solution which compares favorably with other methods. The system combines local image sampling, a self-organizing map neural network, and a convolutional neural network. The self-organizing map provides a quantization of the image samples into a topological space where inputs that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image sample, and the convolutional neural network provides for partial invariance to translation, rotation, scale, and deformation. The convolutional network extracts successively larger features in a hierarchical set of layers. We present results using the Karhunen-Loeve transform in place of the self-organizing map, and a multi-layer perceptron in place of the convolutional netwo...
SIFT Flow: Dense Correspondence across Scenes and its Applications
"... While image alignment has been studied in different areas of computer vision for decades, aligning images depicting different scenes remains a challenging problem. Analogous to optical flow where an image is aligned to its temporally adjacent frame, we propose SIFT flow, a method to align an image ..."
Abstract
-
Cited by 124 (4 self)
- Add to MetaCart
(Show Context)
While image alignment has been studied in different areas of computer vision for decades, aligning images depicting different scenes remains a challenging problem. Analogous to optical flow where an image is aligned to its temporally adjacent frame, we propose SIFT flow, a method to align an image to its nearest neighbors in a large image corpus containing a variety of scenes. The SIFT flow algorithm consists of matching densely sampled, pixel-wise SIFT features between two images, while preserving spatial discontinuities. The SIFT features allow robust matching across different scene/object appearances, whereas the discontinuitypreserving spatial model allows matching of objects located at different parts of the scene. Experiments show that the proposed approach robustly aligns complex scene pairs containing significant spatial differences. Based on SIFT flow, we propose an alignmentbased large database framework for image analysis and synthesis, where image information is transferred from the nearest neighbors to a query image according to the dense scene correspondence. This framework is demonstrated through concrete applications, such as motion field prediction from a single image, motion synthesis via object transfer, satellite image registration and face recognition.
Efficient and Robust Feature Extraction by Maximum Margin Criterion
- In Advances in Neural Information Processing Systems 16
, 2003
"... In pattern recognition, feature extraction techniques are widely employed to reduce the dimensionality of data and to enhance the discriminatory information. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are two most popular linear dimen-sionality reduction methods. Howev ..."
Abstract
-
Cited by 116 (5 self)
- Add to MetaCart
(Show Context)
In pattern recognition, feature extraction techniques are widely employed to reduce the dimensionality of data and to enhance the discriminatory information. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are two most popular linear dimen-sionality reduction methods. However, PCA is not very effective for the extraction of the most discriminant features and LDA is not stable due to the small sample size problem. In this pa-per, we propose some new (linear and nonlinear) feature extractors based on maximum margin criterion (MMC). Geometrically, feature extractors based on MMC maximize the (average) margin between classes after dimensionality reduction. It is shown that MMC can represent class separability better than PCA. As a connection to LDA, we may also derive LDA from MMC by incorporating some constraints. By using some other constraints, we establish a new linear feature extractor that does not suffer from the small sample size problem, which is known to cause serious stability problems for LDA. The kernelized (nonlinear) counterpart of this lin-ear feature extractor is also established in the paper. Our extensive experiments demonstrate that the new feature extractors are effective, stable, and efficient.
Face recognition from a single image per person: A survey
- PATTERN RECOGNITION
, 2006
"... One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower costs for storing and processing them. Unfortunately, many reported face recognition techniques ..."
Abstract
-
Cited by 108 (6 self)
- Add to MetaCart
(Show Context)
One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower costs for storing and processing them. Unfortunately, many reported face recognition techniques rely heavily on the size and representative of training set, and most of them will suffer serious performance drop or even fail to work if only one training sample per person is available to the systems. This situation is called “one sample per person ” problem: given a stored database of faces, the goal is to identify a person from the database later in time in any different and unpredictable poses, lighting, etc from just one image. Such a task is very challenging for most current algorithms due to the extremely limited representative of training sample. Numerous techniques have been developed to attack this problem, and the purpose of this paper is to categorize and evaluate these algorithms. The prominent algorithms are described and critically analyzed. Relevant issues such as data collection, the influence of the small sample size, and system evaluation are discussed, and several promising directions for future research are also proposed in this paper.
Face Recognition by Support Vector Machines
, 2000
"... Support Vector Machines (SVMs) have been recently proposed as a new technique for pattern recognition. In this paper, the SVMs with a binary tree recognition strategy are used to tackle the face recognition problem. We illustrate the potential of SVMs on the Cambridge ORL face database, which consis ..."
Abstract
-
Cited by 102 (4 self)
- Add to MetaCart
(Show Context)
Support Vector Machines (SVMs) have been recently proposed as a new technique for pattern recognition. In this paper, the SVMs with a binary tree recognition strategy are used to tackle the face recognition problem. We illustrate the potential of SVMs on the Cambridge ORL face database, which consists of 400 images of 40 individuals, containing quite a high degree of variability in expression, pose, and facial details. We also present the recognition experiment on a larger face database of 1079 images of 137 individuals. We compare the SVMs based recognition with the standard eigenface approach using the Nearest Center Classification (NCC) criterion. Keywords: Face recognition, support vector machines, optimal separating hyperplane, binary tree, eigenface, principal component analysis. 1 Introduction Face recognition technology can be used in wide range of applications such as identity authentication, access control, and surveillance. Interests and research activities in face recogn...
Sum-Product Networks: A New Deep Architecture
"... The key limiting factor in graphical model inference and learning is the complexity of the partition function. We thus ask the question: what are general conditions under which the partition function is tractable? The answer leads to a new kind of deep architecture, which we call sumproduct networks ..."
Abstract
-
Cited by 73 (10 self)
- Add to MetaCart
(Show Context)
The key limiting factor in graphical model inference and learning is the complexity of the partition function. We thus ask the question: what are general conditions under which the partition function is tractable? The answer leads to a new kind of deep architecture, which we call sumproduct networks (SPNs). SPNs are directed acyclic graphs with variables as leaves, sums and products as internal nodes, and weighted edges. We show that if an SPN is complete and consistent it represents the partition function and all marginals of some graphical model, and give semantics to its nodes. Essentially all tractable graphical models can be cast as SPNs, but SPNs are also strictly more general. We then propose learning algorithms for SPNs, based on backpropagation and EM. Experiments show that inference and learning with SPNs can be both faster and more accurate than with standard deep networks. For example, SPNs perform image completion better than state-of-the-art deep networks for this task. SPNs also have intriguing potential connections to the architecture of the cortex. 1