Results 1 
3 of
3
On uniform relationships between combinatorial problems
"... The enterprise of comparing mathematical theorems according to their logical strength is an active area in mathematical logic, with one of the most common frameworks for doing so being reverse mathematics. In this setting, one investigates which theorems provably imply which others in a weak formal ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
The enterprise of comparing mathematical theorems according to their logical strength is an active area in mathematical logic, with one of the most common frameworks for doing so being reverse mathematics. In this setting, one investigates which theorems provably imply which others in a weak formal theory roughly corresponding to computable mathematics. Since the proofs of such implications take place in classical logic, they may in principle involve appeals to multiple applications of a particular theorem, or to nonuniform decisions about how to proceed in a given construction. In practice, however, if a theorem Q implies a theorem P, it is usually because there is a direct uniform translation of the problems represented by P into the problems represented by Q, in a precise sense formalized by Weihrauch reducibility. We study this notion of uniform reducibility in the context of several natural combinatorial problems, and compare and contrast it with the traditional notion of implication in reverse mathematics. We show, for instance, that for all n, j, k ≥ 1, if j < k then Ramsey’s theorem for ntuples and k many colors is not uniformly, or Weihrauch, reducible to Ramsey’s theorem for ntuples and j many colors. The two theorems are classically equivalent, so our analysis gives a genuinely finer metric by which to gauge the relative strength of mathematical propositions. We also study Weak König’s Lemma, the Thin Set Theorem, and the Rainbow Ramsey’s Theorem, along with a number of their variants investigated in the literature. Weihrauch reducibility turns out to be connected with sequential forms of mathematical principles, where one wishes to solve infinitely many instances of a particular problem simultaneously. We exploit this connection to uncover new points of difference between combinatorial problems previously thought to be more closely related.
INDUCTION, BOUNDING, WEAK COMBINATORIAL PRINCIPLES, AND THE HOMOGENEOUS MODEL THEOREM
, 2014
"... Goncharov and Peretyat’kin independently gave necessary and sufficient conditions for when a set of types of a complete theory T is the type spectrum of some homogeneous model of T. Their result can be stated as a principle of second order arithmetic, which we call the Homogeneous Model Theorem (HM ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
Goncharov and Peretyat’kin independently gave necessary and sufficient conditions for when a set of types of a complete theory T is the type spectrum of some homogeneous model of T. Their result can be stated as a principle of second order arithmetic, which we call the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. We show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense. We do the same for an analogous result of Peretyat’kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.