Results 1 - 10
of
103
Dynamical statistical shape priors for level set based tracking
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2006
"... Abstract. In recent years, researchers have proposed to introduce statistical shape knowledge into the level set method in order to cope with insufficient low-level information. While these priors were shown to drastically improve the segmentation of images or image sequences, so far the focus has b ..."
Abstract
-
Cited by 102 (8 self)
- Add to MetaCart
(Show Context)
Abstract. In recent years, researchers have proposed to introduce statistical shape knowledge into the level set method in order to cope with insufficient low-level information. While these priors were shown to drastically improve the segmentation of images or image sequences, so far the focus has been on statistical shape priors that are time-invariant. Yet, in the context of tracking deformable objects, it is clear that certain silhouettes may become more or less likely over time. In this paper, we tackle the challenge of learning dynamical statistical models for implicitly represented shapes. We show how these can be integrated into a segmentation process in a Bayesian framework for image sequence segmentation. Experiments demonstrate that such shape priors with memory can drastically improve the segmentation of image sequences. 1 Level Set Based Image Segmentation In 1988, Osher and Sethian [16] introduced the level set method 1 as a means to implicitly propagate boundaries C(t) in the image plane Ω ⊂ R 2 by evolving an
Variational Bayesian Inference for fMRI time series
- NeuroImage
"... We describe a Bayesian estimation and inference procedure for fMRI time series based on the use of General Linear Models with Autoregressive (AR) error processes. We make use of the Variational Bayesian (VB) framework which approximates the true posterior density with a factorised density. The fidel ..."
Abstract
-
Cited by 55 (14 self)
- Add to MetaCart
(Show Context)
We describe a Bayesian estimation and inference procedure for fMRI time series based on the use of General Linear Models with Autoregressive (AR) error processes. We make use of the Variational Bayesian (VB) framework which approximates the true posterior density with a factorised density. The fidelity of this approximation is verified via Gibbs sampling. The VB approach provides a natural extension to previous Bayesian analyses which have used Empirical Bayes. VB has the advantage of taking into account the variability of hyperparameter estimates with little additional computational effort. Further, VB allows for automatic selection of the order of the AR process. Results are shown on simulated data and on data from an event-related fMRI experiment. 1
Multivariate autoregressive modeling of fmri time series. NeuroImage
, 1477
"... We propose the use of Multivariate Autoregressive (MAR) models of fMRI time series to make inferences about functional integration within the human brain. The method is demonstrated with synthetic and real data showing how such models are able to characterise inter-regional dependence. We extend lin ..."
Abstract
-
Cited by 54 (9 self)
- Add to MetaCart
(Show Context)
We propose the use of Multivariate Autoregressive (MAR) models of fMRI time series to make inferences about functional integration within the human brain. The method is demonstrated with synthetic and real data showing how such models are able to characterise inter-regional dependence. We extend linear MAR models to accommodate nonlinear interactions to model top-down modulatory processes with bilinear terms. MAR models are time series models and thereby model temporal order within measured brain activity. A further benefit of the MAR approach is that connectivity maps may contain loops, yet exact inference can proceed within a linear framework. Model order selection and parameter estimation are implemented using Bayesian methods. 2 1
Algorithm 808: ARfit - A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models
- ACM TOMS
, 2001
"... ARfit is a collection of Matlab modules for modeling and analyzing multivariate time series with autoregressive (AR) models. ARfit contains modules for fitting AR models to given time series data, for analyzing eigenmodes of a fitted model, and for simulating AR processes. ARfit estimates the parame ..."
Abstract
-
Cited by 45 (2 self)
- Add to MetaCart
ARfit is a collection of Matlab modules for modeling and analyzing multivariate time series with autoregressive (AR) models. ARfit contains modules for fitting AR models to given time series data, for analyzing eigenmodes of a fitted model, and for simulating AR processes. ARfit estimates the parameters of AR models from given time series data with a stepwise least squares algorithm that is computationally efficient, in particular when the data are high-dimensional. ARfit modules construct approximate confidence intervals for the estimated parameters and compute statistics with which the adequacy of a fitted model can be assessed. Dynamical characteristics of the modeled time series can be examined by means of a decomposition of a fitted AR model into eigenmodes and associated oscillation periods, damping times, and excitations. The ARfit module that performs the eigendecomposition of a fitted model also constructs approximate confidence intervals for the eigenmodes and their oscillation periods and damping times.
Vision Based Fire Detection
, 2004
"... Vision based fire detection is potentially a useful technique. With the increase in the number of surveillance cameras being installed, a vision based fire detection capability can be incorporated in existing surveillance systems at relatively low additional cost. Vision based fire detection offers ..."
Abstract
-
Cited by 36 (1 self)
- Add to MetaCart
Vision based fire detection is potentially a useful technique. With the increase in the number of surveillance cameras being installed, a vision based fire detection capability can be incorporated in existing surveillance systems at relatively low additional cost. Vision based fire detection offers advantages over the traditional methods. It will thus complement the existing devices. In this paper, we present spectral, spatial and temporal models of fire regions in visual image sequences. The spectral model is represented in terms of the color probability density of fire pixels. The spatial model captures the spatial structure within a fire region. The shape of a fire region is represented in terms of the spatial frequency content of the region contour using its Fourier coefficients. The temporal changes in these coefficients are used as the temporal signatures of the fire region. Specifically, an autoregressive model of the Fourier coefficient series is used. Experiments with a large number of scenes show that our method is capable of detecting fire reliably.
Identifying neural drivers with functional MRI: an electrophysiological validation
- PLoS Biol
, 2008
"... Whether functional magnetic resonance imaging (fMRI) allows the identification of neural drivers remains an open question of particular importance to refine physiological and neuropsychological models of the brain, and/or to understand neurophysiopathology. Here, in a rat model of absence epilepsy s ..."
Abstract
-
Cited by 32 (1 self)
- Add to MetaCart
(Show Context)
Whether functional magnetic resonance imaging (fMRI) allows the identification of neural drivers remains an open question of particular importance to refine physiological and neuropsychological models of the brain, and/or to understand neurophysiopathology. Here, in a rat model of absence epilepsy showing spontaneous spike-and-wave discharges originating from the first somatosensory cortex (S1BF), we performed simultaneous electroencephalographic (EEG) and fMRI measurements, and subsequent intracerebral EEG (iEEG) recordings in regions strongly activated in fMRI (S1BF, thalamus, and striatum). fMRI connectivity was determined from fMRI time series directly and from hidden state variables using a measure of Granger causality and Dynamic Causal Modelling that relates synaptic activity to fMRI. fMRI connectivity was compared to directed functional coupling estimated from iEEG using asymmetry in generalised synchronisation metrics. The neural driver of spike-and-wave discharges was estimated in S1BF from iEEG, and from fMRI only when hemodynamic effects were explicitly removed. Functional connectivity analysis applied directly on fMRI signals failed because hemodynamics varied between regions, rendering temporal precedence irrelevant. This paper provides the first experimental substantiation of the theoretical possibility to improve interregional coupling estimation from hidden neural states of fMRI. As such, it has important implications for future studies on brain connectivity using functional neuroimaging.
Undercomplete blind subspace deconvolution
- JMLR
, 2007
"... We introduce the blind subspace deconvolution (BSSD) problem, which is the extension of both the blind source deconvolution (BSD) and the independent subspace analysis (ISA) tasks. We examine the case of the undercomplete BSSD (uBSSD). Applying temporal concatenation we reduce this problem to ISA. T ..."
Abstract
-
Cited by 26 (18 self)
- Add to MetaCart
(Show Context)
We introduce the blind subspace deconvolution (BSSD) problem, which is the extension of both the blind source deconvolution (BSD) and the independent subspace analysis (ISA) tasks. We examine the case of the undercomplete BSSD (uBSSD). Applying temporal concatenation we reduce this problem to ISA. The associated ‘high dimensional ’ ISA problem can be handled by a recent technique called joint f-decorrelation (JFD). Similar decorrelation methods have been used previously for kernel independent component analysis (kernel-ICA). More precisely, the kernel canonical correlation (KCCA) technique is a member of this family, and, as is shown in this paper, the kernel generalized variance (KGV) method can also be seen as a decorrelation method in the feature space. These kernel based algorithms will be adapted to the ISA task. In the numerical examples, we (i) examine how efficiently the emerging higher dimensional ISA tasks can be tackled, and (ii) explore the working and advantages of the derived kernel-ISA methods.
An Investigation of Feature Models for Music Genre Classification Using the Support Vector Classifier
- In International Conference on Music Information Retrieval
, 2005
"... In music genre classification the decision time is typically of the order of several seconds, however, most automatic music genre classification systems focus on short time features derived from 10 −50ms. This work investigates two models, the multivariate Gaussian model and the multivariate autoreg ..."
Abstract
-
Cited by 25 (3 self)
- Add to MetaCart
In music genre classification the decision time is typically of the order of several seconds, however, most automatic music genre classification systems focus on short time features derived from 10 −50ms. This work investigates two models, the multivariate Gaussian model and the multivariate autoregressive model for modelling short time features. Furthermore, it was investigated how these models can be integrated over a segment of short time features into a kernel such that a support vector machine can be applied. Two kernels with this property were considered, the convolution kernel and product probability kernel. In order to examine the different methods an 11 genre music setup was utilized. In this setup the Mel Frequency Cepstral Coefficients were used as short time features. The accuracy of the best performing model on this data set was ∼ 44 % compared to a human performance of ∼ 52 % on the same data set.
Boredom: A Review
- Human Factors
, 1981
"... Edward Jenner, who discovered that it is possible to vaccinate against Small Pox using material from Cow Pox, is rightly the man who started the science of immunology. However, over the passage of time many of the details surrounding his astounding discovery have been lost or forgotten. Also, the en ..."
Abstract
-
Cited by 23 (0 self)
- Add to MetaCart
(Show Context)
Edward Jenner, who discovered that it is possible to vaccinate against Small Pox using material from Cow Pox, is rightly the man who started the science of immunology. However, over the passage of time many of the details surrounding his astounding discovery have been lost or forgotten. Also, the environment within which Jenner worked as a physician in the countryside, and the state of the art of medicine and society are difficult to appreciate today. It is important to recall that people were still being bled at the time, to relieve the presence of evil humors. Accordingly, this review details Jenner’s discovery and attempts to place it in historical context. Also, the vaccine that Jenner used, which decreased the prevalence of Small Pox worldwide in his own time, and later was used to eradicate Small Pox altogether, is discussed in light of recent data.
Bayesian multivariate autoregressive models with structured priors
- IEE Proc
, 2002
"... ..."
(Show Context)