Results 1  10
of
68
Robust Monte Carlo Localization for Mobile Robots
, 2001
"... Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), whi ..."
Abstract

Cited by 826 (88 self)
 Add to MetaCart
(Show Context)
Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called MixtureMCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach.
Surface reconstruction from unorganized points
 COMPUTER GRAPHICS (SIGGRAPH ’92 PROCEEDINGS)
, 1992
"... We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1�:::�xng IR 3 on or near an unknown manifold M, and produces as output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be know ..."
Abstract

Cited by 811 (8 self)
 Add to MetaCart
We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1�:::�xng IR 3 on or near an unknown manifold M, and produces as output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be known in advance — all are inferred automatically from the data. This problem naturally arises in a variety of practical situations such as range scanning an object from multiple view points, recovery of biological shapes from twodimensional slices, and interactive surface sketching.
Locality Preserving Projections
, 2002
"... Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data s ..."
Abstract

Cited by 404 (16 self)
 Add to MetaCart
Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA)  a classical linear technique that projects the data along the directions of maximal variance. When the high dimensional data lies on a low dimensional manifold embedded in the ambient space, the Locality Preserving Projections are obtained by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. As a result, LPP shares many of the data representation properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear Embedding. Yet LPP is linear and more crucially is defined everywhere in ambient space rather than just on the training data points. This is borne out by illustrative examples on some high dimensional data sets.
External Memory Algorithms and Data Structures
, 1998
"... Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. In this paper, we surve ..."
Abstract

Cited by 360 (23 self)
 Add to MetaCart
(Show Context)
Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. In this paper, we survey the state of the art in the design and analysis of external memory algorithms and data structures (which are sometimes referred to as "EM" or "I/O" or "outofcore" algorithms and data structures). EM algorithms and data structures are often designed and analyzed using the parallel disk model (PDM). The three machineindependent measures of performance in PDM are the number of I/O operations, the CPU time, and the amount of disk space. PDM allows for multiple disks (or disk arrays) and parallel CPUs, and it can be generalized to handle tertiary storage and hierarchical memory. We discuss several important paradigms for how to solve batched and online problems efficiently in external memory. Programming tools and environments are available for simplifying the programming task. The TPIE system (Transparent Parallel I/O programming Environment) is both easy to use and efficient in terms of execution speed. We report on some experiments using TPIE in the domain of spatial databases. The newly developed EM algorithms and data structures that incorporate the paradigms we discuss are significantly faster than methods currently used in practice.
Efficient Memorybased Learning for Robot Control
, 1990
"... This dissertation is about the application of machine learning to robot control. A system which has no initial model of the robot/world dynamics should be able to construct such a model using data received through its sensorsan approach which is formalized here as the $AB (StateActionBehaviour) ..."
Abstract

Cited by 121 (3 self)
 Add to MetaCart
This dissertation is about the application of machine learning to robot control. A system which has no initial model of the robot/world dynamics should be able to construct such a model using data received through its sensorsan approach which is formalized here as the $AB (StateActionBehaviour) control cycle. A method of learning is presented in which all the experiences in the lifetime of the robot are explicitly remembered. The experiences are stored in a manner which permits fast recall of the closest previous experience to any new situation, thus permitting very quick predictions of the effects of proposed actions and, given a goal behaviour, permitting fast generation of a candidate action. The learning can take place in highdimensional nonlinear control spaces with realvalued ranges of variables. Furthermore, the method avoids a number of shortcomings of earlier learning methods in which the controller can become trapped in inadequate performance which does not improve. Also considered is how the system is made resistant to noisy inputs and how it adapts to environmental changes. A well founded mechanism for choosing actions is introduced which solves the experiment/perform dilemma for this domain with adequate computational efficiency, and with fast convergence to the goal behaviour. The dissertation explefins in detail how the $AB control cycle can be integrated into both low and high complexity tasks. The methods and algorithms are evaluated with numerous experiments using both real and simulated robot domefins. The final experiment also illustrates how a compound learning task can be structured into a hierarchy of simple learning tasks.
Indexing for data models with constraints and classes
 Journal of Computer and System Sciences
, 1996
"... We examine I Oefficient data structures that provide indexing support for new data models. The database languages of these models include concepts from constraint programming (e.g., relational tuples are generated to conjunctions of constraints) and from objectoriented programming (e.g., objects a ..."
Abstract

Cited by 114 (19 self)
 Add to MetaCart
We examine I Oefficient data structures that provide indexing support for new data models. The database languages of these models include concepts from constraint programming (e.g., relational tuples are generated to conjunctions of constraints) and from objectoriented programming (e.g., objects are organized in class hierarchies). Let n be the size of the database, c the number of classes, B the page size on secondary storage, and t the size of the output of a query: (1) Indexing by one attribute in many constraint data models is equivalent to external dynamic interval management, which is a special case of external dynamic twodimensional range searching. We present a semidynamic data structure for this problem that has worstcase space O(n B) pages, query I O time O(logB n+t B) and O(logB n+(logB n) 2 B) amortized insert I O time. Note that, for the static version of this problem, this is the first worstcase optimal solution. (2) Indexing by one attribute and by class name in an objectoriented model, where objects are organized
Particle Filters for Mobile Robot Localization
, 2001
"... This article describes a family of methods, known as Monte Carlo localization (MCL) (Dellaert at al. 1999b, Fox et al. 1999b). The MCL algorithm is a particle filter combined with probabilistic models of robot perception and motion. Building on this, we will describe a variation of MCL which uses a ..."
Abstract

Cited by 113 (19 self)
 Add to MetaCart
(Show Context)
This article describes a family of methods, known as Monte Carlo localization (MCL) (Dellaert at al. 1999b, Fox et al. 1999b). The MCL algorithm is a particle filter combined with probabilistic models of robot perception and motion. Building on this, we will describe a variation of MCL which uses a different proposal distribution (a mixture distribution) that facilitates fast recovery from global localization failures. As we will see, this proposal distribution has a range of advantages over that used in standard MCL, but it comes at the price that it is more difficult to implement, and it requires an algorithm for sampling poses from sensor measurements, which might be difficult to obtain. Finally, we will present an extension of MCL to cooperative multirobot localization of robots that can perceive each other during localization. All these approaches have been tested thoroughly in practice. Experimental results are provided to demonstrate their relative strengths and weaknesses in practical robot applications.
Algorithms and Data Structures for External Memory
, 2006
"... Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. Algorithms and Data Str ..."
Abstract

Cited by 84 (6 self)
 Add to MetaCart
(Show Context)
Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. Algorithms and Data Structures for External Memory surveys the state of the art in the design and analysis of external memory (or EM) algorithms and data structures, where the goal is to exploit locality in order to reduce the I/O costs. A variety of EM paradigms are considered for solving batched and online problems efficiently in external memory. Algorithms and Data Structures for External Memory describes several useful paradigms for the design and implementation of efficient EM algorithms and data structures. The problem domains considered include sorting, permuting, FFT, scientific computing, computational geometry, graphs, databases, geographic information systems, and text and string processing. Algorithms and Data Structures for External Memory is an invaluable reference for anybody interested in, or conducting research in the design, analysis, and implementation of algorithms and data structures. This book is originally published as
Optimal Dynamic Interval Management in External Memory (Extended Abstract)
 IN PROC. IEEE SYMP. ON FOUNDATIONS OF COMP. SCI
, 1996
"... We present a space and I/Ooptimal externalmemory data structure for answering stabbing queries on a set of dynamically maintained intervals. Our data structure settles an open problem in databases and I/O algorithms by providing the first optimal externalmemory solution to the dynamic interval m ..."
Abstract

Cited by 81 (20 self)
 Add to MetaCart
We present a space and I/Ooptimal externalmemory data structure for answering stabbing queries on a set of dynamically maintained intervals. Our data structure settles an open problem in databases and I/O algorithms by providing the first optimal externalmemory solution to the dynamic interval management problem, which is a special case of 2dimensional range searching and a central problem for objectoriented and temporal databases and for constraint logic programming. Our data structure simultaneously uses optimal linear space (that is, O(N/B) blocks of disk space) and achieves the optimal O(log B N + T/B) I/O query bound and O(log B N ) I/O update bound, where B is the I/O block size and T the number of elements in the answer to a query. Our structure is also the first optimal external data structure for a 2dimensional range searching problem that has worstcase as opposed to amortized update bounds. Part of the data structure uses a novel balancing technique for efficient worstcase manipulation of balanced trees, which is of independent interest.