Results 1  10
of
110
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has run for M steps, with M sufficiently large, the distribution governing the state of the chain approximates the desired distribution. Unfortunately it can be difficult to determine how large M needs to be. We describe a simple variant of this method that determines on its own when to stop, and that outputs samples in exact accordance with the desired distribution. The method uses couplings, which have also played a role in other sampling schemes; however, rather than running the coupled chains from the present into the future, one runs from a distant point in the past up until the present, where the distance into the past that one needs to go is determined during the running of the al...
The Markov Chain Monte Carlo method: an approach to approximate counting and integration
, 1996
"... In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stocha ..."
Abstract

Cited by 286 (12 self)
 Add to MetaCart
(Show Context)
In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stochastic processes hardly touches on the sort of nonasymptotic analysis required in this application. As a consequence, it had previously not been possible to make useful, mathematically rigorous statements about the quality of the estimates obtained. Within the last ten years, analytical tools have been devised with the aim of correcting this deficiency. As well as permitting the analysis of Monte Carlo algorithms for classical problems in statistical physics, the introduction of these tools has spurred the development of new approximation algorithms for a wider class of problems in combinatorial enumeration and optimization. The “Markov chain Monte Carlo ” method has been applied to a variety of such problems, and often provides the only known efficient (i.e., polynomial time) solution technique.
Mixing times of lozenge tiling and card shuffling Markov chains
, 1997
"... Abstract. We show how to combine Fourier analysis with coupling arguments to bound the mixing times of a variety of Markov chains. The mixing time is the number of steps a Markov chain takes to approach its equilibrium distribution. One application is to a class of Markov chains introduced by Luby, ..."
Abstract

Cited by 104 (1 self)
 Add to MetaCart
(Show Context)
Abstract. We show how to combine Fourier analysis with coupling arguments to bound the mixing times of a variety of Markov chains. The mixing time is the number of steps a Markov chain takes to approach its equilibrium distribution. One application is to a class of Markov chains introduced by Luby, Randall, and Sinclair to generate random tilings of regions by lozenges. For an ℓ×ℓ region we bound the mixing time by O(ℓ 4 log ℓ), which improves on the previous bound of O(ℓ 7), and we show the new bound to be essentially tight. In another application we resolve a few questions raised by Diaconis and SaloffCoste by lower bounding the mixing time of various cardshuffling Markov chains. Our lower bounds are within a constant factor of their upper bounds. When we use our methods to modify a pathcoupling analysis of Bubley and Dyer, we obtain an O(n 3 log n) upper bound on the mixing time of the KarzanovKhachiyan Markov chain for linear extensions. 1.
On Markov chains for independent sets
 Journal of Algorithms
, 1997
"... Random independent sets in graphs arise, for example, in statistical physics, in the hardcore model of a gas. A new rapidly mixing Markov chain for independent sets is defined in this paper. We show that it is rapidly mixing for a wider range of values of the parameter than the LubyVigoda chain, ..."
Abstract

Cited by 83 (17 self)
 Add to MetaCart
Random independent sets in graphs arise, for example, in statistical physics, in the hardcore model of a gas. A new rapidly mixing Markov chain for independent sets is defined in this paper. We show that it is rapidly mixing for a wider range of values of the parameter than the LubyVigoda chain, the best previously known. Moreover the new chain is apparently more rapidly mixing than the LubyVigoda chain for larger values of (unless the maximum degree of the graph is 4). An extension of the chain to independent sets in hypergraphs is described. This chain gives an efficient method for approximately counting the number of independent sets of hypergraphs with maximum degree two, or with maximum degree three and maximum edge size three. Finally, we describe a method which allows one, under certain circumstances, to deduce the rapid mixing of one Markov chain from the rapid mixing of another, with the same state space and stationary distribution. This method is applied to two Markov ch...
BALANCED ALLOCATIONS: THE HEAVILY LOADED CASE
, 2006
"... We investigate ballsintobins processes allocating m balls into n bins based on the multiplechoice paradigm. In the classical singlechoice variant each ball is placed into a bin selected uniformly at random. In a multiplechoice process each ball can be placed into one out of d ≥ 2 randomly selec ..."
Abstract

Cited by 73 (9 self)
 Add to MetaCart
We investigate ballsintobins processes allocating m balls into n bins based on the multiplechoice paradigm. In the classical singlechoice variant each ball is placed into a bin selected uniformly at random. In a multiplechoice process each ball can be placed into one out of d ≥ 2 randomly selected bins. It is known that in many scenarios having more than one choice for each ball can improve the load balance significantly. Formal analyses of this phenomenon prior to this work considered mostly the lightly loaded case, that is, when m ≈ n. In this paper we present the first tight analysis in the heavily loaded case, that is, when m ≫ n rather than m ≈ n. The best previously known results for the multiplechoice processes in the heavily loaded case were obtained using majorization by the singlechoice process. This yields an upper bound of the maximum load of bins of m/n + O ( √ m ln n/n) with high probability. We show, however, that the multiplechoice processes are fundamentally different from the singlechoice variant in that they have “short memory. ” The great consequence of this property is that the deviation of the multiplechoice processes from the optimal allocation (that is, the allocation in which each bin has either ⌊m/n ⌋ or ⌈m/n ⌉ balls) does not increase with the number of balls as in the case of the singlechoice process. In particular, we investigate the allocation obtained by two different multiplechoice allocation schemes,
Analyzing Glauber Dynamics by Comparison of Markov Chains
 Journal of Mathematical Physics
, 1999
"... A popular technique for studying random properties of a combinatorial set is to design a Markov chain Monte Carlo algorithm. For many problems there are natural Markov chains connecting the set of allowable configurations which are based on local moves, or "Glauber dynamics." Typically the ..."
Abstract

Cited by 71 (16 self)
 Add to MetaCart
(Show Context)
A popular technique for studying random properties of a combinatorial set is to design a Markov chain Monte Carlo algorithm. For many problems there are natural Markov chains connecting the set of allowable configurations which are based on local moves, or "Glauber dynamics." Typically these single site update algorithms are difficult to analyze, so often the Markov chain is modified to update several sites simultaneously. Recently there has been progress in analyzing these more complicated algorithms for several important combinatorial problems. In this work we use the comparison technique of Diaconis and SaloffCoste to show that several of the natural single point update algorithms are efficient. The strategy is to relate the mixing rate of these algorithms to the corresponding nonlocal algorithms which have already been analyzed. This allows us to give polynomial bounds for single point update algorithms for problems such as generating planar tilings and random triangulations of c...
Fast Convergence of the Glauber Dynamics for Sampling Independent Sets: Part II
, 1999
"... This work is a continuation of [4]. The focus is on the problem of sampling independent sets of a graph with maximum degree ffi. The weight of each independent set is expressed in terms of a fixed positive parameter 2 ffi\Gamma2 , where the weight of an indepednent set oe is joej . The Glaube ..."
Abstract

Cited by 49 (3 self)
 Add to MetaCart
(Show Context)
This work is a continuation of [4]. The focus is on the problem of sampling independent sets of a graph with maximum degree ffi. The weight of each independent set is expressed in terms of a fixed positive parameter 2 ffi\Gamma2 , where the weight of an indepednent set oe is joej . The Glauber dynamics is a simple Markov chain Monte Carlo method for sampling from this distribution. In [4], we showed fast convergence of this dynamics for trianglefree graphs. This paper proves fast convergence for arbitrary graphs. Computer Science Division, University of California at Berkeley, and International Computer Science Institute. Supported in part by National Science Foundation Fellowship. 1 Introduction For a more general introduction and a discussion of related work we refer the reader to the companion work [4]. The aim of this work is given a graph G = (V; E) to efficiently sample from the probability measure ¯G defined on the set of indepedent sets\Omega =\Omega G of G weight...
Markov Chain Decomposition for Convergence Rate Analysis
"... In this paper we develop tools for analyzing the rate at which a reversible Markov chain converges to stationarity. Our techniques are useful when the Markov chain can be decomposed into pieces which are themselves easier to analyze. The main theorems relate the spectral gap of the original Markov c ..."
Abstract

Cited by 48 (9 self)
 Add to MetaCart
In this paper we develop tools for analyzing the rate at which a reversible Markov chain converges to stationarity. Our techniques are useful when the Markov chain can be decomposed into pieces which are themselves easier to analyze. The main theorems relate the spectral gap of the original Markov chains to the spectral gap of the pieces. In the first case the pieces are restrictions of the Markov chain to subsets of the state space; the second case treats a MetropolisHastings chain whose equilibrium distribution is a weighted average of equilibrium distributions of other MetropolisHastings chains on the same state space.
A more rapidly mixing Markov chain for graph colourings
, 1997
"... We define a new Markov chain on (proper) kcolourings of graphs, and relate its convergence properties to the maximum degree \Delta of the graph. The chain is shown to have bounds on convergence time appreciably better than those for the wellknown Jerrum/SalasSokal chain in most circumstances. For ..."
Abstract

Cited by 47 (12 self)
 Add to MetaCart
We define a new Markov chain on (proper) kcolourings of graphs, and relate its convergence properties to the maximum degree \Delta of the graph. The chain is shown to have bounds on convergence time appreciably better than those for the wellknown Jerrum/SalasSokal chain in most circumstances. For the case k = 2\Delta, we provide a dramatic decrease in running time. We also show improvements whenever the graph is regular, or fewer than 3\Delta colours are used. The results are established using the method of path coupling. We indicate that our analysis is tight by showing that the couplings used are optimal in a sense which we define. 1 Introduction Markov chains on the set of proper colourings of graphs have been studied in computer science [9] and statistical physics [13]. In both applications, the rapidity of convergence of the chain is the main focus of interest, though for somewhat different reasons. The papers [9, 13] introduced a simple Markov chain, which we shall refer to a...
Distributed selfish load balancing
, 2006
"... Suppose that a set of m tasks are to be shared as equally as possible amongst a set of n resources. A gametheoretic mechanism to find a suitable allocation is to associate each task with a “selfish agent”, and require each agent to select a resource, with the cost of a resource being the number of ..."
Abstract

Cited by 41 (2 self)
 Add to MetaCart
(Show Context)
Suppose that a set of m tasks are to be shared as equally as possible amongst a set of n resources. A gametheoretic mechanism to find a suitable allocation is to associate each task with a “selfish agent”, and require each agent to select a resource, with the cost of a resource being the number of agents to select it. Agents would then be expected to migrate from overloaded to underloaded resources, until the allocation becomes balanced. Recent work has studied the question of how this can take place within a distributed setting in which agents migrate selfishly without any centralized control. In this paper we discuss a natural protocol for the agents which combines the following desirable features: It can be implemented in a strongly distributed setting, uses no central control, and has good convergence properties. For m ≫ n, the system becomes approximately balanced (an ǫNash equilibrium) in expected time O(log log m). We show using a martingale technique that the process converges to a perfectly balanced allocation in expected time O(log log m + n 4). We also give a lower bound of Ω(max{loglog m, n}) for the convergence time.