Results 1 - 10
of
13
2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description
- Mon. Wea. Rev
"... Part I of this two-part paper treats Tropical Rainfall Measuring Mission (TRMM) radar, passive microwave, and lightning observations in hurricanes individually. This paper (Part II) examines relationships between these parameters (and implications of the relationships). Quantitative relationships be ..."
Abstract
-
Cited by 22 (4 self)
- Add to MetaCart
(Show Context)
Part I of this two-part paper treats Tropical Rainfall Measuring Mission (TRMM) radar, passive microwave, and lightning observations in hurricanes individually. This paper (Part II) examines relationships between these parameters (and implications of the relationships). Quantitative relationships between lightning occurrence and 85-GHz brightness temperature, 37-GHz brightness temperature, and radar reflectivity in the mixed phase region are established separately for hurricane eyewall regions, inner rainband regions, and outer rainband regions; other tropical oceanic regions; and tropical continental regions. When any of the brightness temperature or radar parameters are held constant as controls, lightning is more frequent in hurricane outer rainbands than elsewhere over tropical oceans, and more frequent over continents than even in the outer rainbands. Reflectivity profiles associated with specific brightness temperatures are presented, demonstrating a link between high-altitude ice phase precipitation and 85-GHz scattering and a link between lower-altitude precipitation and 37-GHz scattering. Based on the combination of radar, passive microwave, and lightning observations, it is proposed that supercooled cloud water occurs preferentially in outer rainbands compared to other tropical oceanic precipitation. The suspected microphysical differences produce only subtle differences in the remote sensing parameters other than lightning. 1.
2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the Tropics
"... The bulk radar reflectivity structures, 85- and 37-GHz brightness temperatures, and lightning characteristics of precipitating systems in tropical Africa, South America, the east Pacific, and west Pacific are documented using data from the Tropical Rainfall Measuring Mission (TRMM) satellite during ..."
Abstract
-
Cited by 20 (8 self)
- Add to MetaCart
(Show Context)
The bulk radar reflectivity structures, 85- and 37-GHz brightness temperatures, and lightning characteristics of precipitating systems in tropical Africa, South America, the east Pacific, and west Pacific are documented using data from the Tropical Rainfall Measuring Mission (TRMM) satellite during August, September, and October of 1998. The particular focus is on precipitation features [defined as a contiguous area $75 km2 with either a near-surface reflectivity $20 dBZ or an 85-GHz polarization-corrected temperature (PCT) # 250 K] with appreciable rainfall, which account for the bulk of the total rainfall and lightning flash density in their respective regions. Systems over the tropical continents typically have greater magnitudes of reflectivity extending to higher altitudes than tropical oceanic systems. This is consistent with the observation of stronger ice scattering signatures (lower 85- and 37-GHz PCT) in the systems over land. However, when normalized by reflectivity heights, tropical continental features consistently have higher 85-GHz PCT than tropical oceanic features. It is inferred that greater supercooled water contents aloft in the tropical continental systems contribute to this brightness temperature difference. Lightning (as detected by the Lightning Imaging Sensor) is much more likely in tropical continental features than tropical oceanic features with similar brightness temperatures or similar reflectivity heights. Vertical profiles
a: Physical and Microwave Radiative Properties of Precipitating Clouds. Part II: A Parametric ID Rain-Cloud Model for Use in Microwave Radiative Transfer Simulations
- J. Appl. Met
, 2001
"... ABSTRACT Using stringent criteria pertaining to rain-cloud optical thickness and horizontal extent, 3203 multichannel microwave observations of heavy, widespread tropical precipitation over ocean were selected from 9 months of global Special Sensor Microwave Imager (SSM/I) data. These observations ..."
Abstract
-
Cited by 8 (0 self)
- Add to MetaCart
(Show Context)
ABSTRACT Using stringent criteria pertaining to rain-cloud optical thickness and horizontal extent, 3203 multichannel microwave observations of heavy, widespread tropical precipitation over ocean were selected from 9 months of global Special Sensor Microwave Imager (SSM/I) data. These observations subsequently were found to be associated almost exclusively with stratiform rain areas in tropical cyclones. Because of the restrictions on optical thickness and spatial extent, the mean multichannel microwave brightness temperatures and their interchannel covariances are presumed to be determined primarily by the vertical microphysical structure of the rain clouds. The distribution of the above observations in seven-dimensional channel space is characterized concisely using principal component analysis. It is found that only three independent variables are sufficient to explain 97% of the variance in the correlation matrix. This result suggests that the radiometrically important microphysical properties of these rain clouds are strongly interdependent. The most significant eigenvector of the observation correlation matrix corresponds to variable scattering at high frequencies by ice aloft. Its spectral dependence is accurately given by 1.76 , where is the microwave frequency. This empirical result constrains the effective mean sizes of ice particles responsible for observed passive microwave scattering in rain clouds and provides a plausible empirical basis for accurately predicting the magnitude of scattering effects by ice at non-SSM/I microwave frequencies. There are also qualitative indications that this mode of brightness temperature variability is poorly correlated with surface rain rate in this study sample. The empirical results presented herein are expected to be of value for the validation and improvement of microphysical assumptions and optical parameterizations in forward microwave radiative transfer models. Companion papers describe the actual retrieval of effective rain-cloud microphysical properties from the observed multichannel radiances.
Modeling Antenna Noise Temperature Due to Rain Clouds at Microwave and Millimeter-Wave Frequencies
"... Abstract—A characterization of the antenna noise temperature due to precipitating clouds at Ku band and above is described by deriving a closed-form solution of the scalar radiative transfer equation. Following the so called Eddington approximation, the analytical model is based on the truncated exp ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
(Show Context)
Abstract—A characterization of the antenna noise temperature due to precipitating clouds at Ku band and above is described by deriving a closed-form solution of the scalar radiative transfer equation. Following the so called Eddington approximation, the analytical model is based on the truncated expansion of unpo-larized brightness temperature angular spectrum in terms of Legendre polynomials. The accuracy of the sky-noise Eddington model (SNEM) is evaluated by comparing it with an accurate numerical solution, taking into consideration a wide variability of medium optical parameters as well as a typical rain slab model. The effect of the antenna pattern for ground-based antennas is also quantified. Physically-based radiative cloud models, characterized by a vertically-inhomogeneous geometry, are also introduced. Hydrometeor optical parameters are calculated and modeled for a large set of beacon channel frequencies. Nimbostratus and cumulonimbus models are finally applied to SNEM for simu-lating slant-path attenuation and antenna noise temperatures for ground-based antennas. Results are compared with ITALSAT satellite receiver measurements and co-located radiometric data between 13.0 and 49.5 GHz for various rain events during 1998. Index Terms—Antenna noise temperature, clouds and rainfall, radio propagation, scattering, sky noise temperature. I.
Title of Document: RETRIEVAL OF ICE CLOUD PARAMETERS USING DMSP SPECIAL SENSOR MICROWAVE IMAGER/SOUNDER.
"... Clouds exert a profound influence on both the water balance of the atmosphere and the earth’s radiation budget (Stephens 2005; Stephens and Kummerow 2007). Among the global distribution, 30 % of them are ice clouds (Riedi et al. 2000). It is important to improve our knowledge of the ice cloud proper ..."
Abstract
- Add to MetaCart
(Show Context)
Clouds exert a profound influence on both the water balance of the atmosphere and the earth’s radiation budget (Stephens 2005; Stephens and Kummerow 2007). Among the global distribution, 30 % of them are ice clouds (Riedi et al. 2000). It is important to improve our knowledge of the ice cloud properties in order to determine their influence to the global ecosystem. For ice clouds with millimeter-size ice particles, which are generally found in anvil cirrus and deep convections, microwave and millimeter wave length satellite measurements are suitable for the ice cloud microphysical property retrieval because of its strong ability to penetrate deeper into dense ice clouds. For these types of ice clouds, brightness temperatures at the top of the atmosphere are analytically derived as a function of vertically integrated ice water content (i.e. ice water path), effective particle diameter, and bulk volume density. In general, three brightness temperature measurements are needed to retrieve the three ice cloud microphysical parameters. A two-stream radiative transfer theory was applied to data from the Advanced Microwave Sounding Unit (AMSU) and the Moisture Humidity Sensor (MHS) in order to generate global ice water paths
Intercomparison of Millimeter-Wave Radiative Transfer Models
"... All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately. ..."
Abstract
- Add to MetaCart
(Show Context)
All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.
CORRECTING FOR PRECIPITATION EFFECTS IN SATELLITE-BASED PASSIVE MICROWAVE TROPICAL CYCLONE INTENSITY ESTIMATES
, 2005
"... Public reporting burden for this collection of Information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments ..."
Abstract
- Add to MetaCart
Public reporting burden for this collection of Information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
Ground-Based Multifrequency Microwave Radiometry for Rainfall Remote Sensing
"... Abstract-Inversion algorithms for ground-based microwave radiometric retrieval of surface rain-rate, integrated cloud parameters, and slant-path attenuation are proposed and tested. The estimation methods are trained by numerical simulations of a radiative transfer model applied to microphysically- ..."
Abstract
- Add to MetaCart
(Show Context)
Abstract-Inversion algorithms for ground-based microwave radiometric retrieval of surface rain-rate, integrated cloud parameters, and slant-path attenuation are proposed and tested. The estimation methods are trained by numerical simulations of a radiative transfer model applied to microphysically-consistent precipitating cloud structures, representative of stratiform and convective rainy clouds. The discrete-ordinate method is used to solve the radiative transfer equation for plane-parallel seven-layer structures, including liquid, melted, and ice spherical hydrometeors. Besides ordinary multiple regression, a variance-constrained regression algorithm is developed and applied to synthetic data in order to evaluate its robustness to noise and its potentiality. Selection of optimal frequency sets and polynomial retrieval algorithms for rainfall parameters is carried out and discussed. Ground-based radiometric measurements at 13.0, 23.8, and 31.7 GHz are used for experimentally testing the retrieval algorithms. Comparison with rain-gauge data and rain path-attenuation measurements, derived from the three ITALSAT satellite beacons at 18.7, 39.6, and 49.5 GHz acquired at Pomezia (Rome, Italy), are performed for two selected cases of moderate and intense rainfall during 1998. Results show a fairly good agreement between retrieved and measured rainfall parameters, pointing out possible effects of nonhomogeneous beam filling at low frequencies when observing small convective cells. Index Terms-Atmospheric remote sensing, ground-based microwave radiometry, precipitation retrieval, radiative transfer modeling.
Generalized Eddington analytical model for azimuthally dependent radiance simulation in stratified media
"... A fast analytical radiative transfer model to account for propagation of unpolarized monochromatic radiation in random media with a plane-parallel geometry is presented. The model employs an Eddington-like approach combined with the delta phase-function transformation technique. The Eddington appro ..."
Abstract
- Add to MetaCart
(Show Context)
A fast analytical radiative transfer model to account for propagation of unpolarized monochromatic radiation in random media with a plane-parallel geometry is presented. The model employs an Eddington-like approach combined with the delta phase-function transformation technique. The Eddington approximation is extended in a form that allows us to unfold the azimuthal dependence of the radiance field. A first-order scattering correction to the azimuth-dependent Eddington radiative model solution is also performed to improve the model accuracy for low-scattering media and flexibility with respect to use of explicit arbitrary phase functions. The first-order scattering-corrected solution, called the generalized Eddington radiative model (GERM), is systematically tested against a numerical multistream discrete ordinate model for backscattered radiance at the top of the medium. The typical mean accuracy of the GERM solution is generally better than 10% with a standard deviation of 20% for radiance calculations over a wide range of independent input optical parameters and observation angles. GERM errors are shown to be comparable with the errors due to an input parameter uncertainty of precise numerical models. The proposed model can be applied in a quite arbitrary random medium, and the results are appealing in all cases where speed, accuracy, and͞or closed-form solutions are requested. Its potentials, limitations, and further extensions are discussed.