Results 1 - 10
of
70
Evaluation campaigns and TRECVid
- in ACM MIR
, 2006
"... The TREC Video Retrieval Evaluation (TRECVid) is an international benchmarking activity to encourage research in video information retrieval by providing a large test collection, uniform scoring procedures, and a forum for organizations 1 interested in comparing their results. TRECVid completed its ..."
Abstract
-
Cited by 483 (20 self)
- Add to MetaCart
(Show Context)
The TREC Video Retrieval Evaluation (TRECVid) is an international benchmarking activity to encourage research in video information retrieval by providing a large test collection, uniform scoring procedures, and a forum for organizations 1 interested in comparing their results. TRECVid completed its fifth annual cycle at the end of 2005 and in 2006 TRECVid will involve almost 70 research organizations, universities and other consortia. Throughout its existence, TRECVid has benchmarked both interactive and automatic/manual searching for shots from within a video corpus, automatic detection of a variety of semantic and low-level video features, shot boundary detection and the detection of story boundaries in broadcast TV news. This paper will give an introduction to information retrieval (IR) evaluation from both a user and a system perspective, highlighting that system evaluation is by far the most prevalent type of evaluation carried out. We also include a summary of TRECVid as an example of a system evaluation benchmarking campaign and this allows us to discuss whether such campaigns are a good thing or a bad thing. There are arguments for and against these campaigns and we present some of them in the paper concluding that on balance they have had a very positive impact on research progress.
The challenge problem for automated detection of 101 semantic concepts in multimedia
- In Proceedings of the ACM International Conference on Multimedia
, 2006
"... We introduce the challenge problem for generic video indexing to gain insight in intermediate steps that affect performance of multimedia analysis methods, while at the same time fostering repeatability of experiments. To arrive at a challenge problem, we provide a general scheme for the systematic ..."
Abstract
-
Cited by 193 (18 self)
- Add to MetaCart
(Show Context)
We introduce the challenge problem for generic video indexing to gain insight in intermediate steps that affect performance of multimedia analysis methods, while at the same time fostering repeatability of experiments. To arrive at a challenge problem, we provide a general scheme for the systematic examination of automated concept detection methods, by decomposing the generic video indexing problem into 2 unimodal analysis experiments, 2 multimodal analysis experiments, and 1 combined analysis experiment. For each experiment, we evaluate generic video indexing performance on 85 hours of international broadcast news data, from the TRECVID 2005/2006 benchmark, using a lexicon of 101 semantic concepts. By establishing a minimum performance on each experiment, the challenge problem allows for component-based optimization of the generic indexing issue, while simultaneously offering other researchers a reference for comparison during indexing methodology development. To stimulate further investigations in intermediate analysis steps that influence video indexing performance, the challenge offers to the research community a manually annotated concept lexicon, pre-computed low-level multimedia features, trained classifier models, and five experiments together with baseline performance, which are all available at
Adding semantics to detectors for video retrieval
- IEEE Transactions on Multimedia
, 2007
"... Abstract — In this paper, we propose an automatic video retrieval method based on high-level concept detectors. Research in video analysis has reached the point where over 100 concept detectors can be learned in a generic fashion, albeit with mixed performance. Such a set of detectors is very small ..."
Abstract
-
Cited by 77 (14 self)
- Add to MetaCart
(Show Context)
Abstract — In this paper, we propose an automatic video retrieval method based on high-level concept detectors. Research in video analysis has reached the point where over 100 concept detectors can be learned in a generic fashion, albeit with mixed performance. Such a set of detectors is very small still compared to ontologies aiming to capture the full vocabulary a user has. We aim to throw a bridge between the two fields by building a multimedia thesaurus, i.e. a set of machine learned concept detectors that is enriched with semantic descriptions and semantic structure obtained from WordNet. Given a multimodal user query, we identify three strategies to select a relevant detector from this thesaurus, namely: text matching, ontology querying, and semantic visual querying. We evaluate the methods against the automatic search task of the TRECVID 2005 video retrieval benchmark, using a news video archive of 85 hours in combination with a thesaurus of 363 machine learned concept detectors. We assess the influence of thesaurus size on video search performance, evaluate and compare the multimodal selection strategies for concept detectors, and finally discuss their combined potential using oracle fusion. The set of queries in the TRECVID 2005 corpus is too small to be definite in our conclusions, but the results suggest promising new lines of research. Index Terms — Video retrieval, concept learning, knowledge modeling, content analysis and indexing, multimedia information systems I.
High level feature detection from video in TRECVid: a 5-year retrospective of achievements
- In Ajay Divakaran, editor, Multimedia Content Analysis, Theory and Applications
, 2008
"... Summary. *Successful and effective content-based access to digital video requires fast, accurate and scalable methods to determine the video content automatically. A variety of contemporary approaches to this rely on text taken from speech within the video, or on matching one video frame against oth ..."
Abstract
-
Cited by 68 (7 self)
- Add to MetaCart
(Show Context)
Summary. *Successful and effective content-based access to digital video requires fast, accurate and scalable methods to determine the video content automatically. A variety of contemporary approaches to this rely on text taken from speech within the video, or on matching one video frame against others using low-level characteristics like colour, texture, or shapes, or on determining and matching objects appearing within the video. Possibly the most important technique, however, is one which determines the presence or absence of a high-level or semantic feature, within a video clip or shot. By utilizing dozens, hundreds or even thousands of such semantic features we can support many kinds of content-based video navigation. Critically however, this depends on being able to determine whether each feature is or is not present in a video clip. The last 5 years have seen much progress in the development of techniques to determine the presence of semantic features within video. This progress can be tracked in the annual TRECVid benchmarking activity where dozens of research groups measure the effectiveness of their techniques on common data and using an open, metrics-based approach. In this chapter we summarise the work done on the TRECVid high-level feature task, showing the progress made year-on-year. This provides a fairly comprehensive statement on where
A learned lexicon-driven paradigm for interactive video retrieval
- IEEE Trans. Multimedia
, 2007
"... Abstract—Effective video retrieval is the result of an interplay between interactive query selection, advanced visualization of results, and a goal-oriented human user. Traditional interactive video retrieval approaches emphasize paradigms, such as query-by-keyword and query-by-example, to aid the u ..."
Abstract
-
Cited by 36 (13 self)
- Add to MetaCart
(Show Context)
Abstract—Effective video retrieval is the result of an interplay between interactive query selection, advanced visualization of results, and a goal-oriented human user. Traditional interactive video retrieval approaches emphasize paradigms, such as query-by-keyword and query-by-example, to aid the user in the search for relevant footage. However, recent results in automatic indexing indicate that query-by-concept is becoming a viable resource for interactive retrieval also. We propose in this paper a new video retrieval paradigm. The core of the paradigm is formed by first detecting a large lexicon of semantic concepts. From there, we combine query-by-concept, query-by-example, query-by-keyword, and user interaction into the MediaMill semantic video search engine. To measure the impact of increasing lexicon size on interactive video retrieval performance, we performed two experiments against the 2004 and 2005 NIST TRECVID benchmarks, using lexicons containing 32 and 101 concepts, respectively. The results suggest that from all factors that play a role in interactive retrieval, a large lexicon of semantic concepts matters most. Indeed, by exploiting large lexicons, many video search questions are solvable without using query-by-keyword and query-by-example. In addition, we show that the lexicon-driven search engine outperforms all state-of-the-art video retrieval systems in both TRECVID 2004 and 2005. Index Terms—Benchmarking, concept learning, content analysis and indexing, interactive systems, multimedia information systems, video retrieval. I.
Visualizing the history of living spaces
- IEEE Transactions on Visualization and Computer Graphics
"... The technology available to building designers now makes it possible to monitor buildings on a very large scale. Video cameras and motion sensors are commonplace in practically every office space, and are slowly making their way into living spaces. The application of such technologies, in particular ..."
Abstract
-
Cited by 27 (3 self)
- Add to MetaCart
(Show Context)
The technology available to building designers now makes it possible to monitor buildings on a very large scale. Video cameras and motion sensors are commonplace in practically every office space, and are slowly making their way into living spaces. The application of such technologies, in particular video cameras, while improving security, also violates privacy. On the other hand, motion sensors, while being privacy-conscious, typically do not provide enough information for a human operator to maintain the same degree of awareness about the space that can be achieved by using video cameras. We propose a novel approach in which we use a large number of simple motion sensors and a small set of video cameras to monitor a large office space. In our system we deployed 215 motion sensors and six video cameras to monitor the 3,000-square-meter office space occupied by 80 people for a period of about one year. The main problem in operating such systems is finding a way to present this highly multidimensional data, which includes both spatial and temporal components, to a human operator to allow browsing and searching recorded data in an efficient and intuitive way. In this paper we present our experiences and the solutions that we have developed in the course of our work on the system. We consider this work to be the first step in helping designers and managers of building systems gain access to information about occupants ’ behavior in the context of an entire building in a way that is only minimally intrusive to the occupants ’ privacy.
A Survey on Visual Content-Based Video Indexing and Retrieval
"... Abstract—Video indexing and retrieval have a wide spectrum of promising applications, motivating the interest of researchers worldwide. This paper offers a tutorial and an overview of the landscape of general strategies in visual content-based video indexing and retrieval, focusing on methods for vi ..."
Abstract
-
Cited by 26 (1 self)
- Add to MetaCart
(Show Context)
Abstract—Video indexing and retrieval have a wide spectrum of promising applications, motivating the interest of researchers worldwide. This paper offers a tutorial and an overview of the landscape of general strategies in visual content-based video indexing and retrieval, focusing on methods for video structure analysis, including shot boundary detection, key frame extraction and scene segmentation, extraction of features including static key frame features, object features and motion features, video data mining, video annotation, video retrieval including query interfaces, similarity measure and relevance feedback, and video browsing. Finally, we analyze future research directions. Index Terms—Feature extraction, video annotation, video browsing, video retrieval, video structure analysis. I.
The MediaMill TRECVID 2008 Semantic Video Search Engine
"... In this paper we describe our TRECVID 2008 video retrieval experiments. The MediaMill team participated in three tasks: concept detection, automatic search, and interactive search. Rather than continuing to increase the number of concept detectors available for retrieval, our TRECVID 2008 experiment ..."
Abstract
-
Cited by 26 (10 self)
- Add to MetaCart
(Show Context)
In this paper we describe our TRECVID 2008 video retrieval experiments. The MediaMill team participated in three tasks: concept detection, automatic search, and interactive search. Rather than continuing to increase the number of concept detectors available for retrieval, our TRECVID 2008 experiments focus on increasing the robustness of a small set of detectors. To that end, our concept detection experiments emphasize in particular the role of sampling, the value of color invariant features, the influence of codebook construction, and the effectiveness of kernel-based learning parameters. For retrieval, a robust but limited set of concept detectors necessitates the need to rely on as many auxiliary information channels as possible. Therefore, our automatic search experiments focus on predicting which information channel to trust given a certain topic, leading to a novel framework for predictive video retrieval. To improve the video retrieval results further, our interactive search experiments investigate the roles of visualizing preview results for a certain browse-dimension and active learning mechanisms that learn to solve complex search topics by analysis from user browsing behavior. The 2008 edition of the TRECVID benchmark has been the most successful MediaMill participation to date, resulting in the top ranking for both concept detection and interactive search, and a runner-up ranking for automatic retrieval. Again a lot has been learned during this year’s TRECVID campaign; we highlight the most important lessons at the end of this paper.
Information-theoretic semantic multimedia indexing
- in ACM Conference on Image and Video Retrieval
, 2007
"... To solve the problem of indexing collections with diverse text documents, image documents, or documents with both text and images, one needs to develop a model that supports heterogeneous types of documents. In this paper, we show how information theory supplies us with the tools necessary to develo ..."
Abstract
-
Cited by 26 (10 self)
- Add to MetaCart
(Show Context)
To solve the problem of indexing collections with diverse text documents, image documents, or documents with both text and images, one needs to develop a model that supports heterogeneous types of documents. In this paper, we show how information theory supplies us with the tools necessary to develop a unique model for text, image, and text/image retrieval. In our approach, for each possible query keyword we estimate a maximum entropy model based on exclusively continuous features that were preprocessed. The unique continuous feature-space of text and visual data is constructed by using a minimum description length criterion to find the optimal feature-space representation (optimal from an information theory point of view). We evaluate our approach in three experiments: only text retrieval, only image retrieval, and text combined with image retrieval.
A.W.: Learned lexicon-driven interactive video retrieval
, 2006
"... Abstract. We combine in this paper automatic learning of a large lexicon of semantic concepts with traditional video retrieval methods into a novel approach to narrow the semantic gap. The core of the proposed solution is formed by the automatic detection of an unprecedented lexicon of 101 concepts. ..."
Abstract
-
Cited by 22 (0 self)
- Add to MetaCart
(Show Context)
Abstract. We combine in this paper automatic learning of a large lexicon of semantic concepts with traditional video retrieval methods into a novel approach to narrow the semantic gap. The core of the proposed solution is formed by the automatic detection of an unprecedented lexicon of 101 concepts. From there, we explore the combination of query-by-concept, query-by-example, query-bykeyword, and user interaction into the MediaMill semantic video search engine. We evaluate the search engine against the 2005 NIST TRECVID video retrieval benchmark, using an international broadcast news archive of 85 hours. Top ranking results show that the lexicon-driven search engine is highly effective for interactive video retrieval. 1