Results 1  10
of
168
AND/OR branchandbound search for combinatorial optimization in graphical models
, 2008
"... We introduce a new generation of depthfirst BranchandBound algorithms that explore the AND/OR search tree using static and dynamic variable orderings for solving general constraint optimization problems. The virtue of the AND/OR representation of the search space is that its size may be far small ..."
Abstract

Cited by 39 (19 self)
 Add to MetaCart
(Show Context)
We introduce a new generation of depthfirst BranchandBound algorithms that explore the AND/OR search tree using static and dynamic variable orderings for solving general constraint optimization problems. The virtue of the AND/OR representation of the search space is that its size may be far smaller than that of a traditional OR representation, which can translate into significant time savings for search algorithms. The focus of this paper is on linear space search which explores the AND/OR search tree rather than the search graph and therefore make no attempt to cache information. We investigate the power of the minibucket heuristics within the AND/OR search space, in both static and dynamic setups. We focus on two most common optimization problems in graphical models: finding the Most Probable Explanation (MPE) in Bayesian networks and solving Weighted CSPs (WCSP). In extensive empirical evaluations we demonstrate that the new AND/OR BranchandBound approach improves considerably over the traditional OR search strategy and show how various variable ordering schemes impact the performance of the AND/OR search scheme.
Backjumpbased techniques versus conflictdirected heuristics
 In Proceedings of ICTAI’04
, 2004
"... In this paper, we present a general algorithm which gives an uniform view of several stateoftheart systematic backtracking search algorithms for solving both binary and nonbinary CSP instances. More precisely, this algorithm integrates the most usual or/and sophisticated lookback and lookahead ..."
Abstract

Cited by 34 (11 self)
 Add to MetaCart
(Show Context)
In this paper, we present a general algorithm which gives an uniform view of several stateoftheart systematic backtracking search algorithms for solving both binary and nonbinary CSP instances. More precisely, this algorithm integrates the most usual or/and sophisticated lookback and lookahead schemes. By means of this algorithm, our purpose is then to study the interest of backjumpbased techniques with respect to conflictdirected variable ordering heuristics. 1
Generalized arc consistency for positive table constraints
 In Proceedings of CP’06
, 2006
"... Abstract. In this paper, we propose a new algorithm to establish Generalized Arc Consistency (GAC) on positive table constraints, i.e. constraints defined in extension by a set of allowed tuples. Our algorithm visits the lists of valid and allowed tuples in an alternative fashion when looking for a ..."
Abstract

Cited by 28 (9 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper, we propose a new algorithm to establish Generalized Arc Consistency (GAC) on positive table constraints, i.e. constraints defined in extension by a set of allowed tuples. Our algorithm visits the lists of valid and allowed tuples in an alternative fashion when looking for a support (i.e. a tuple that is both allowed and valid). It is then able to jump over sequences of valid tuples containing no allowed tuple and over sequences of allowed tuples containing no valid tuple. Our approach, that can be easily grafted to any generic GAC algorithm, admits on some instances a behaviour quadratic in the arity of the constraints whereas classical approaches, i.e. approaches that focus on either valid or allowed tuples, admit an exponential behaviour. We show the effectiveness of this approach, both theoretically and experimentally. 1
A simple model to generate hard satisfiable instances
 In Proceedings of IJCAI’05
, 2005
"... In this paper, we try to further demonstrate that the models of random CSP instances proposed by [Xu and Li, 2000; 2003] are of theoretical and practical interest. Indeed, these models, called RB and RD, present several nice features. First, it is quite easy to generate random instances of any arity ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
In this paper, we try to further demonstrate that the models of random CSP instances proposed by [Xu and Li, 2000; 2003] are of theoretical and practical interest. Indeed, these models, called RB and RD, present several nice features. First, it is quite easy to generate random instances of any arity since no particular structure has to be integrated, or property enforced, in such instances. Then, the existence of an asymptotic phase transition can be guaranteed while applying a limited restriction on domain size and on constraint tightness. In that case, a threshold point can be precisely located and all instances have the guarantee to be hard at the threshold, i.e., to have an exponential treeresolution complexity. Next, a formal analysis shows that it is possible to generate forced satisfiable instances whose hardness is similar to unforced satisfiable ones. This analysis is supported by some representative results taken from an intensive experimentation that we have carried out, using complete and incomplete search methods. 1
Optimization of simple tabular reduction for table constraints
 In Proceedings of CP’08
, 2008
"... Abstract. Table constraints play an important role within constraint programming. Recently, many schemes or algorithms have been proposed to propagate table constraints or/and to compress their representation. We show that simple tabular reduction (STR), a technique proposed by J. Ullmann to dynamic ..."
Abstract

Cited by 25 (11 self)
 Add to MetaCart
(Show Context)
Abstract. Table constraints play an important role within constraint programming. Recently, many schemes or algorithms have been proposed to propagate table constraints or/and to compress their representation. We show that simple tabular reduction (STR), a technique proposed by J. Ullmann to dynamically maintain the tables of supports, is very often the most efficient practical approach to enforce generalized arc consistency within MAC. We also describe an optimization of STR which allows limiting the number of operations related to validity checking or search of supports. Interestingly enough, this optimization makes STR potentially r times faster where r is the arity of the constraint(s). The results of an extensive experimentation that we have conducted with respect to random and structured instances indicate that the optimized algorithm we propose is usually around twice as fast as the original STR and can be up to one order of magnitude faster than previous stateoftheart algorithms on some series of instances. 1
Random constraint satisfaction: easy generation of hard (satisfiable) instances
 Artificial Intelligence
"... rue de l’université, SP 16 ..."
(Show Context)
Backtracking Search Algorithms
, 2006
"... There are three main algorithmic techniques for solving constraint satisfaction problems: backtracking search, local search, and dynamic programming. In this chapter, I survey backtracking search algorithms. Algorithms based on dynamic programming [15]— sometimes referred to in the literature as var ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
There are three main algorithmic techniques for solving constraint satisfaction problems: backtracking search, local search, and dynamic programming. In this chapter, I survey backtracking search algorithms. Algorithms based on dynamic programming [15]— sometimes referred to in the literature as variable elimination, synthesis, or inference algorithms—are the topic of Chapter 7. Local or stochastic search algorithms are the topic of Chapter 5. An algorithm for solving a constraint satisfaction problem (CSP) can be either complete or incomplete. Complete, or systematic algorithms, come with a guarantee that a solution will be found if one exists, and can be used to show that a CSP does not have a solution and to find a provably optimal solution. Backtracking search algorithms and dynamic programming algorithms are, in general, examples of complete algorithms. Incomplete, or nonsystematic algorithms, cannot be used to show a CSP does not have a solution or to find a provably optimal solution. However, such algorithms are often effective at finding a solution if one exists and can be used to find an approximation to an optimal solution. Local or stochastic search algorithms are examples of incomplete algorithms. Of the two
Extracting MUCs from constraint networks
 In Proceedings of ECAI’06
, 2006
"... Abstract. We address the problem of extracting Minimal Unsatisfiable Cores (MUCs) from constraint networks. This computationally hard problem has a practical interest in many application domains such as configuration, planning, diagnosis, etc. Indeed, identifying one or several disjoint MUCs can hel ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
Abstract. We address the problem of extracting Minimal Unsatisfiable Cores (MUCs) from constraint networks. This computationally hard problem has a practical interest in many application domains such as configuration, planning, diagnosis, etc. Indeed, identifying one or several disjoint MUCs can help circumscribe different sources of inconsistency in order to repair a system. In this paper, we propose an original approach that involves performing successive runs of a complete backtracking search, using constraint weighting, in order to surround an inconsistent part of a network, before identifying all transition constraints belonging to a MUC using a dichotomic process. We show the effectiveness of this approach, both theoretically and experimentally. 1
Identifying and Exploiting Problem Structures Using Explanationbased Constraint Programming
 Constraints
"... Abstract. Identifying structures in a given combinatorial problem is often a key step for designing efficient search heuristics or for understanding the inherent complexity of the problem. Several Operations Research approaches apply decomposition or relaxation strategies upon such a structure ident ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
(Show Context)
Abstract. Identifying structures in a given combinatorial problem is often a key step for designing efficient search heuristics or for understanding the inherent complexity of the problem. Several Operations Research approaches apply decomposition or relaxation strategies upon such a structure identified within a given problem. The next step is to design algorithms that adaptively integrate that kind of information during search. We claim in this paper, inspired by previous work on impactbased search strategies for constraint programming, that using an explanationbased constraint solver may lead to collect invaluable information on the intimate dynamically revealed and static structures of a problem instance. Moreover, we discuss how dedicated OR solving strategies (such as Benders decomposition) could be adapted to constraint programming when specific relationships between variables are exhibited. 1.
LocalSearch Extraction of MUSes
"... SAT is probably one of the moststudied constraint satisfaction problems. In this paper, a new hybrid technique based on local search is introduced in order to approximate and extract minimally unsatisfiable subformulas (in short, MUSes) of unsatisfiable SAT instances. It is based on an original cou ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
(Show Context)
SAT is probably one of the moststudied constraint satisfaction problems. In this paper, a new hybrid technique based on local search is introduced in order to approximate and extract minimally unsatisfiable subformulas (in short, MUSes) of unsatisfiable SAT instances. It is based on an original counting heuristic grafted to a local search algorithm, which explores the neighborhood of the current interpretation in an original manner, making use of a critical clause concept. Intuitively, a critical clause is a falsified clause that becomes true thanks to a local search flip only when some other clauses become false at the same time. In the paper, the critical clause concept is investigated. It is shown to be the cornerstone of the efficiency of our approach, which outperforms competing ones to compute MUSes, inconsistent covers and sets of MUSes, most of the time. 1