Results 1 
2 of
2
A Survey of Image Registration Techniques
 ACM Computing Surveys
, 1992
"... Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors or from different viewpoints. Over the years, a broad range of techniques have been developed for the various types of data and problems. These ..."
Abstract

Cited by 964 (2 self)
 Add to MetaCart
Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors or from different viewpoints. Over the years, a broad range of techniques have been developed for the various types of data and problems. These techniques have been independently studied for several different applications resulting in a large body of research. This paper organizes this material by establishing the relationship between the distortions in the image and the type of registration techniques which are most suitable. Two major types of distortions are distinguished. The first type are those which are the source of misregistration, i.e., they are the cause of the misalignment between the two images. Distortions which are the source of misregistration determine the transformation class which will optimally align the two images. The transformation class in turn influences the general technique that should be taken....
Empirical entropy manipulation for realworld problems
 in:Advances in Neural Information Processing Systems (NIPS 8
, 1996
"... violaQsalk.edu No finite sample is sufficient to determine the density, and therefore the entropy, of a signal directly. Some assumption about either the functional form of the density or about its smoothness is necessary. Both amount to a prior over the space of possible density functions. By far t ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
(Show Context)
violaQsalk.edu No finite sample is sufficient to determine the density, and therefore the entropy, of a signal directly. Some assumption about either the functional form of the density or about its smoothness is necessary. Both amount to a prior over the space of possible density functions. By far the most common approach is to assume that the density has a parametric form. By contrast we derive a differential learning rule called EMMA that optimizes entropy by way of kernel density estimation. Entropy and its derivative can then be calculated by sampling from this density estimate. The resulting parameter update rule is surprisingly simple and efficient. We will show how EMMA can be used to detect and correct corruption in magnetic resonance images (MRI). This application is beyond the scope of existing parametric entropy models. 1