Results 1  10
of
162
Bivariate Shrinkage Functions for WaveletBased Denoising Exploiting Interscale Dependency
, 2002
"... Most simple nonlinear thresholding rules for waveletbased denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. In this paper, we will only consider the dependencies between the coefficients and their parents i ..."
Abstract

Cited by 206 (8 self)
 Add to MetaCart
Most simple nonlinear thresholding rules for waveletbased denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. In this paper, we will only consider the dependencies between the coefficients and their parents in detail. For this purpose, new nonGaussian bivariate distributions are proposed, and corresponding nonlinear threshold functions (shrinkage functions) are derived from the models using Bayesian estimation theory. The new shrinkage functions do not assume the independence of wavelet coefficients. We will show three image denoising examples in order to show the performance of these new bivariate shrinkage rules. In the second example, a simple subbanddependent datadriven image denoising system is described and compared with effective datadriven techniques in the literature, namely VisuShrink, SureShrink, BayesShrink, and hidden Markov models. In the third example, the same idea is applied to the dualtree complex wavelet coefficients.
Quantized frame expansions with erasures
 Applied and Computational Harmonic Analysis
, 2001
"... ..."
Multiresolution markov models for signal and image processing
 Proceedings of the IEEE
, 2002
"... This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coheren ..."
Abstract

Cited by 153 (17 self)
 Add to MetaCart
(Show Context)
This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coherent picture of this framework. A second goal is to describe how this topic fits into the even larger field of MR methods and concepts–in particular making ties to topics such as wavelets and multigrid methods. A third is to provide several alternate viewpoints for this body of work, as the methods and concepts we describe intersect with a number of other fields. The principle focus of our presentation is the class of MR Markov processes defined on pyramidally organized trees. The attractiveness of these models stems from both the very efficient algorithms they admit and their expressive power and broad applicability. We show how a variety of methods and models relate to this framework including models for selfsimilar and 1/f processes. We also illustrate how these methods have been used in practice. We discuss the construction of MR models on trees and show how questions that arise in this context make contact with wavelets, state space modeling of time series, system and parameter identification, and hidden
A review of curvelets and recent applications
 IEEE Signal Processing Magazine
, 2009
"... Multiresolution methods are deeply related to image processing, biological and computer vision, scientific computing, etc. The curvelet transform is a multiscale directional transform which allows an almost optimal nonadaptive sparse representation of objects with edges. It has generated increasing ..."
Abstract

Cited by 128 (10 self)
 Add to MetaCart
(Show Context)
Multiresolution methods are deeply related to image processing, biological and computer vision, scientific computing, etc. The curvelet transform is a multiscale directional transform which allows an almost optimal nonadaptive sparse representation of objects with edges. It has generated increasing interest in the community of applied mathematics and signal processing over the past years. In this paper, we present a review on the curvelet transform, including its history beginning from wavelets, its logical relationship to other multiresolution multidirectional methods like contourlets and shearlets, its basic theory and discrete algorithm. Further, we consider recent applications in image/video processing, seismic exploration, fluid mechanics, simulation of partial different equations, and compressed sensing.
Bivariate Shrinkage with Local Variance Estimation
, 2002
"... The performance of imagedenoising algorithms using wavelet transforms can be improved significantly by taking into account the statistical dependencies among wavelet coefficients as demonstrated by several algorithms presented in the literature. In two earlier papers by the authors, a simple bivari ..."
Abstract

Cited by 121 (7 self)
 Add to MetaCart
The performance of imagedenoising algorithms using wavelet transforms can be improved significantly by taking into account the statistical dependencies among wavelet coefficients as demonstrated by several algorithms presented in the literature. In two earlier papers by the authors, a simple bivariate shrinkage rule is described using a coefficient and its parent. The performance can also be improved using simple models by estimating model parameters in a local neighborhood. This letter presents a locally adaptive denoising algorithm using the bivariate shrinkage function. The algorithm is illustrated using both the orthogonal and dual tree complex wavelet transforms. Some comparisons with the best available results will be given in order to illustrate the effectiveness of the proposed algorithm.
Platelets: A Multiscale Approach for Recovering Edges and Surfaces in PhotonLimited Medical Imaging
 IEEE TRANSACTIONS ON MEDICAL IMAGING
, 2003
"... The nonparametric multiscale platelet algorithms presented in this paper, unlike traditional waveletbased methods, are both well suited to photonlimited medical imaging applications involving Poisson data and capable of better approximating edge contours. This paper introduces platelets, localized ..."
Abstract

Cited by 99 (20 self)
 Add to MetaCart
The nonparametric multiscale platelet algorithms presented in this paper, unlike traditional waveletbased methods, are both well suited to photonlimited medical imaging applications involving Poisson data and capable of better approximating edge contours. This paper introduces platelets, localized functions at various scales, locations, and orientations that produce piecewise linear image approximations, and a new multiscale image decomposition based on these functions. Platelets are well suited for approximating images consisting of smooth regions separated by smooth boundaries. For smoothness measured in certain H older classes, it is shown that the error of mterm platelet approximations can decay significantly faster than that of mterm approximations in terms of sinusoids, wavelets, or wedgelets. This suggests that platelets may outperform existing techniques for image denoising and reconstruction. Fast, plateletbased, maximum penalized likelihood methods for photonlimited image denoising, deblurring and tomographic reconstruction problems are developed. Because platelet decompositions of Poisson distributed images are tractable and computationally efficient, existing image reconstruction methods based on expectationmaximization type algorithms can be easily enhanced with platelet techniques. Experimental results suggest that plateletbased methods can outperform standard reconstruction methods currently in use in confocal microscopy, image restoration, and emission tomography.
Hilbert Transform Pairs of Wavelet Bases
, 2001
"... This paper considers the design of pairs of wavelet bases where the wavelets form a Hilbert transform pair. The derivation is based on the limit functions defined by the infinite product formula. It is found that the scaling filters should be offset from one another by a half sample. This gives an a ..."
Abstract

Cited by 82 (10 self)
 Add to MetaCart
(Show Context)
This paper considers the design of pairs of wavelet bases where the wavelets form a Hilbert transform pair. The derivation is based on the limit functions defined by the infinite product formula. It is found that the scaling filters should be offset from one another by a half sample. This gives an alternative derivation and explanation for the result by Kingsbury, that the dualtree DWT is (nearly) shiftinvariant when the scaling filters satisfy the same offset.
Wave atoms and sparsity of oscillatory patterns
 Appl. Comput. Harmon. Anal
, 2006
"... We introduce “wave atoms ” as a variant of 2D wavelet packets obeying the parabolic scaling wavelength ∼ (diameter) 2. We prove that warped oscillatory functions, a toy model for texture, have a significantly sparser expansion in wave atoms than in other fixed standard representations like wavelets, ..."
Abstract

Cited by 73 (10 self)
 Add to MetaCart
(Show Context)
We introduce “wave atoms ” as a variant of 2D wavelet packets obeying the parabolic scaling wavelength ∼ (diameter) 2. We prove that warped oscillatory functions, a toy model for texture, have a significantly sparser expansion in wave atoms than in other fixed standard representations like wavelets, Gabor atoms, or curvelets. We propose a novel algorithm for a tight frame of wave atoms with redundancy two, directly in the frequency plane, by the “wrapping ” technique. We also propose variants of the basic transform for applications in image processing, including an orthonormal basis, and a shiftinvariant tight frame with redundancy four. Sparsity and denoising experiments on both seismic and fingerprint images demonstrate the potential of the tool introduced.
Video denoising using 2D and 3D dualtree complex wavelet transforms
 Wavelet Appl Signal Image Proc. X (Proc. SPIE 5207
, 2003
"... The denoising of video data should take into account both temporal and spatial dimensions, however, true 3D transforms are rarely used for video denoising. Separable 3D transforms have artifacts that degrade their performance in applications. This paper describes the design and application of the n ..."
Abstract

Cited by 71 (5 self)
 Add to MetaCart
(Show Context)
The denoising of video data should take into account both temporal and spatial dimensions, however, true 3D transforms are rarely used for video denoising. Separable 3D transforms have artifacts that degrade their performance in applications. This paper describes the design and application of the nonseparable oriented 3D dualtree wavelet transform for video denoising. This transform gives a motionbased multiscale decomposition for video — it isolates in its subbands motion along different directions. In addition, we investigate the denoising of video using the 2D and 3D dualtree oriented wavelet transforms, where the 2D transform is applied to each frame individually.
The SURELET Approach to Image Denoising
, 2007
"... We propose a new approach to image denoising, based on the imagedomain minimization of an estimate of the mean squared error—Stein’s unbiased risk estimate (SURE). Unlike most existing denoising algorithms, using the SURE makes it needless to hypothesize a statistical model for the noiseless image ..."
Abstract

Cited by 68 (18 self)
 Add to MetaCart
We propose a new approach to image denoising, based on the imagedomain minimization of an estimate of the mean squared error—Stein’s unbiased risk estimate (SURE). Unlike most existing denoising algorithms, using the SURE makes it needless to hypothesize a statistical model for the noiseless image. A key point of our approach is that, although the (nonlinear) processing is performed in a transformed domain—typically, an undecimated discrete wavelet transform, but we also address nonorthonormal transforms—this minimization is performed in the image domain. Indeed, we demonstrate that, when the transform is a “tight ” frame (an undecimated wavelet transform using orthonormal filters), separate subband minimization yields substantially worse results. In order for our approach to be viable, we add another principle, that the denoising process can be expressed as a linear combination of elementary denoising processes—linear expansion of thresholds (LET). Armed with the SURE and LET principles, we show that a denoising algorithm merely amounts to solving a linear system of equations which is obviously fast and efficient. Quite remarkably, the very competitive results obtained by performing a simple threshold (imagedomain SURE optimized) on the undecimated Haar wavelet coefficients show that the SURELET principle has a huge potential.