Results 1 -
3 of
3
Semantic Interaction for Sensemaking: Inferring Analytical Reasoning for Model Steering
- IEEE Trans. Visualization and Computer Graphics
"... Abstract—Visual analytic tools aim to support the cognitively demanding task of sensemaking. Their success often depends on the ability to leverage capabilities of mathematical models, visualization, and human intuition through flexible, usable, and expressive interactions. Spatially clustering data ..."
Abstract
-
Cited by 15 (9 self)
- Add to MetaCart
(Show Context)
Abstract—Visual analytic tools aim to support the cognitively demanding task of sensemaking. Their success often depends on the ability to leverage capabilities of mathematical models, visualization, and human intuition through flexible, usable, and expressive interactions. Spatially clustering data is one effective metaphor for users to explore similarity and relationships between information, adjusting the weighting of dimensions or characteristics of the dataset to observe the change in the spatial layout. Semantic interaction is an approach to user interaction in such spatializations that couples these parametric modifications of the clustering model with users ʼ analytic operations on the data (e.g., direct document movement in the spatialization, highlighting text, search, etc.). In this paper, we present results of a user study exploring the ability of semantic interaction in a visual analytic prototype, ForceSPIRE, to support sensemaking. We found that semantic interaction captures the analytical reasoning of the user through keyword weighting, and aids the user in co-creating a spatialization based on the userʼs reasoning and intuition. Index Terms—User Interaction, visualization, sensemaking, analytic reasoning, visual analytics. 1
Semantic Interaction for Visual Analytics: Inferring Analytical Reasoning for Model Steering
, 2012
"... User interaction in visual analytic systems is critical to enabling visual data exploration. Through interacting with visualizations, users engage in sensemaking, a process of developing and understanding relationships within datasets through foraging and synthesis. For example, two-dimensional layo ..."
Abstract
-
Cited by 2 (1 self)
- Add to MetaCart
User interaction in visual analytic systems is critical to enabling visual data exploration. Through interacting with visualizations, users engage in sensemaking, a process of developing and understanding relationships within datasets through foraging and synthesis. For example, two-dimensional layouts of high-dimensional data can be generated by dimension reduction models, and provide users with an overview of the relationships between information. However, exploring such spatializations can require expertise with the internal mechanisms and parameters of these models. The core contribution of this work is semantic interaction, capable of steering such models without requiring expertise in dimension reduction models, but instead leveraging the domain expertise of the user. Semantic interaction infers the analytical reasoning of the user with model updates, steering the dimension reduction model for visual data exploration. As such, it is an approach to user interaction that leverages interactions designed for synthesis, and couples them with the underlying mathematical model to provide computational support for foraging. As a result, semantic interaction performs
Solving Intelligence Analysis Problems using Biclusters
, 2012
"... Analysts must filter through an ever-growing amount of data to obtain information relevant to their investigations. Looking at every piece of information individually is in many cases not feasible; there is hence a growing need for new filtering tools and techniques to improve the analyst process wi ..."
Abstract
-
Cited by 2 (2 self)
- Add to MetaCart
(Show Context)
Analysts must filter through an ever-growing amount of data to obtain information relevant to their investigations. Looking at every piece of information individually is in many cases not feasible; there is hence a growing need for new filtering tools and techniques to improve the analyst process with large datasets. We present MineVis – an analytics system that integrates biclustering algorithms and visual analytics tools in one seamless environment. The combination of biclusters and visual data glyphs in a visual analytics spatial environment enables a novel type of filtering. This design allows for rapid exploration and navigation across connected documents. Through a user study we conclude that our system has the potential to help analysts filter data by allowing them to i) form hypotheses before reading documents and subsequently ii) validating them by reading a reduced and focused set of documents. ACKNOWLEDGMENTS I want to thank my advisors Chris North and Naren Ramakrishnan for all their support, patience and guidance on my various projects. I also thank Manuel Pérez-Quiñones for introducing me to the MVC paradigm in his user interface software course, as it became invaluable knowledge in designing and