Results 1  10
of
116
Anomaly Detection: A Survey
, 2007
"... Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and c ..."
Abstract

Cited by 540 (5 self)
 Add to MetaCart
Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the di®erent directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.
Bursty and Hierarchical Structure in Streams
, 2002
"... A fundamental problem in text data mining is to extract meaningful structure from document streams that arrive continuously over time. Email and news articles are two natural examples of such streams, each characterized by topics that appear, grow in intensity for a period of time, and then fade aw ..."
Abstract

Cited by 394 (2 self)
 Add to MetaCart
A fundamental problem in text data mining is to extract meaningful structure from document streams that arrive continuously over time. Email and news articles are two natural examples of such streams, each characterized by topics that appear, grow in intensity for a period of time, and then fade away. The published literature in a particular research field can be seen to exhibit similar phenomena over a much longer time scale. Underlying much of the text mining work in this area is the following intuitive premise  that the appearance of a topic in a document stream is signaled by a "burst of activity," with certain features rising sharply in frequency as the topic emerges.
On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration
 SIGKDD'02
, 2002
"... ... mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in ..."
Abstract

Cited by 325 (59 self)
 Add to MetaCart
(Show Context)
... mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in the case of classification and clustering, model accuracy in the case of segmentation) offer an amount of "improvement" that would have been completely dwarfed by the variance that would have been observed by testing on many real world datasets, or the variance that would have been observed by changing minor (unstated) implementation details. To illustrate our point
Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases
 In proceedings of ACM SIGMOD Conference on Management of Data
, 2002
"... Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced d ..."
Abstract

Cited by 316 (33 self)
 Add to MetaCart
(Show Context)
Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced data with a multidimensional index structure. Many dimensionality reduction techniques have been proposed, including Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and the Discrete Wavelet Transform (DWT). In this work we introduce a new dimensionality reduction technique which we call Adaptive Piecewise Constant Approximation (APCA). While previous techniques (e.g., SVD, DFT and DWT) choose a common representation for all the items in the database that minimizes the global reconstruction error, APCA approximates each time series by a set of constant value segments' of varying lengths' such that their individual reconstruction errors' are minimal. We show how APCA can be indexed using a multidimensional index structure. We propose two distance measures in the indexed space that exploit the high fidelity of APCA for fast searching: a lower bounding Euclidean distance approximation, and a nonlower bounding, but very tight Euclidean distance approximation and show how they can support fast exact searchin& and even faster approximate searching on the same index structure. We theoretically and empirically compare APCA to all the other techniques and demonstrate its' superiority.
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
, 2000
"... The problem of similarity search in large time series databases has attracted much attention recently. It is a nontrivial problem because of the inherent high dimensionality of the data. The most promising solutions involve first performing dimensionality reduction on the data, and then indexing th ..."
Abstract

Cited by 240 (21 self)
 Add to MetaCart
(Show Context)
The problem of similarity search in large time series databases has attracted much attention recently. It is a nontrivial problem because of the inherent high dimensionality of the data. The most promising solutions involve first performing dimensionality reduction on the data, and then indexing the reduced data with a spatial access method. Three major dimensionality reduction techniques have been proposed, Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and more recently the Discrete Wavelet Transform (DWT). In this work we introduce a new dimensionality reduction technique which we call Piecewise Aggregate Approximation (PAA). We theoretically and empirically compare it to the other techniques and demonstrate its superiority. In addition to being competitive with or faster than the other methods, our approach has numerous other advantages. It is simple to understand and to implement, it allows more flexible distance measures, including weighted Euclidean queries, and the index can be built in linear time.
StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time
 In VLDB
, 2002
"... Consider the problem of monitoring tens of thousands of time series data streams in an online fashion and making decisions based on them. In addition to single stream statistics such as average and standard deviation, we also want to find high correlations among all pairs of streams. A stock market ..."
Abstract

Cited by 221 (10 self)
 Add to MetaCart
(Show Context)
Consider the problem of monitoring tens of thousands of time series data streams in an online fashion and making decisions based on them. In addition to single stream statistics such as average and standard deviation, we also want to find high correlations among all pairs of streams. A stock market trader might use such a tool to spot arbitrage opportunities.
Rule discovery from time series
 In Proceedings of the 1997 ACM SIGKDD International Conference, ACM SIGKDD
, 1997
"... We consider the problem of finding rules relating patterns in a time series to other patterns in that series, or patterns in one series to patterns in another series. A simple example is a rule such as "a period of low telephone call activity is usually followed by a sharp rise ill call vohune& ..."
Abstract

Cited by 181 (0 self)
 Add to MetaCart
(Show Context)
We consider the problem of finding rules relating patterns in a time series to other patterns in that series, or patterns in one series to patterns in another series. A simple example is a rule such as "a period of low telephone call activity is usually followed by a sharp rise ill call vohune". Examples of rules relating two or more time series are "if the Microsoft stock price goes up and lntel falls, then IBM goes up the next. day, " and "if Microsoft goes up strongly fro " one day, then declines strongly on the next day, and on the same days Intel stays about, level, then IBM stays about level. " Our emphasis is in the discovery of local patterns in multivariate time series, in contrast to traditional time series analysis which largely focuses on global models. Thus, we search for rules whose conditions refer to patterns in time series. However, we do not want to define beforehand which patterns are to be used; rather, we want the patterns to be formed fl’om the data in the context of rule discovery. We describe adaptive methods for finding rules of the above type fi’om timeseries data. The methods are based on discretizing the sequence hy methods resembling vector quantization. \,Ve first form subsequences by sliding window through the time series, and then cluster these subsequences by using a suitable measure of timeseries similarity. The discretized version of the time series is obtained by taldng the cluster identifiers corresponding to the subsequence. Once tl,e timeseries is discretized, we use simple rule finding methods to obtain rifles from the sequence. "vVe present empMcal resuh.s on the behavior of the method.
An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
 In proceedings of the 4th Int'l Conference on Knowledge Discovery and Data Mining
"... We introduce an extended representation of time series that allows fast, accurate classification and clustering in addition to the ability to explore time series data in a relevance feedback framework. The representation consists of piecewise linear segments to represent shape and a weight vector th ..."
Abstract

Cited by 165 (25 self)
 Add to MetaCart
We introduce an extended representation of time series that allows fast, accurate classification and clustering in addition to the ability to explore time series data in a relevance feedback framework. The representation consists of piecewise linear segments to represent shape and a weight vector that contains the relative importance of each individual linear segment. In the classification context, the weights are learned automatically as part of the training cycle. In the relevance feedback context, the weights are determined by an interactive and iterative process in which users rate various choices presented to them. Our representation allows a user to define a variety of similarity measures that can be tailored to specific domains. We demonstrate our approach on space telemetry, medical and synthetic data.
A Survey of Temporal Knowledge Discovery Paradigms and Methods
 IEEE Transactions on Knowledge and Data Engineering
, 2002
"... AbstractÐWith the increase in the size of data sets, data mining has recently become an important research topic and is receiving substantial interest from both academia and industry. At the same time, interest in temporal databases has been increasing and a growing number of both prototype and impl ..."
Abstract

Cited by 119 (8 self)
 Add to MetaCart
(Show Context)
AbstractÐWith the increase in the size of data sets, data mining has recently become an important research topic and is receiving substantial interest from both academia and industry. At the same time, interest in temporal databases has been increasing and a growing number of both prototype and implemented systems are using an enhanced temporal understanding to explain aspects of behavior associated with the implicit timevarying nature of the universe. This paper investigates the confluence of these two areas, surveys the work to date, and explores the issues involved and the outstanding problems in temporal data mining. Index TermsÐTemporal data mining, time sequence mining, trend analysis, temporal rules, semantics of mined rules. 1
Scaling up Dynamic Time Warping for Datamining Applications
 In Proc. 6th Int. Conf. on Knowledge Discovery and Data Mining
, 2000
"... There has been much recent interest in adapting data mining algorithms to time series databases. Most of these algorithms need to compare time series. Typically some variation of Euclidean distance is used. However, as we demonstrate in this paper, Euclidean distance can be an extremely brittle dist ..."
Abstract

Cited by 84 (3 self)
 Add to MetaCart
There has been much recent interest in adapting data mining algorithms to time series databases. Most of these algorithms need to compare time series. Typically some variation of Euclidean distance is used. However, as we demonstrate in this paper, Euclidean distance can be an extremely brittle distance measure. Dynamic time warping (DTW) has been suggested as a technique to allow more robust distance calculations, however it is computationally expensive. In this paper we introduce a modification of DTW which operates on a higher level abstraction of the data, in particular, a Piecewise Aggregate Approximation (PAA). Our approach allows us to outperform DTW by one to two orders of magnitude, with no loss of accuracy.