Results 1  10
of
227
Adaptive Constraint Satisfaction
 WORKSHOP OF THE UK PLANNING AND SCHEDULING
, 1996
"... Many different approaches have been applied to constraint satisfaction. These range from complete backtracking algorithms to sophisticated distributed configurations. However, most research effort in the field of constraint satisfaction algorithms has concentrated on the use of a single algorithm fo ..."
Abstract

Cited by 952 (43 self)
 Add to MetaCart
Many different approaches have been applied to constraint satisfaction. These range from complete backtracking algorithms to sophisticated distributed configurations. However, most research effort in the field of constraint satisfaction algorithms has concentrated on the use of a single algorithm for solving all problems. At the same time, a consensus appears to have developed to the effect that it is unlikely that any single algorithm is always the best choice for all classes of problem. In this paper we argue that an adaptive approach should play an important part in constraint satisfaction. This approach relaxes the commitment to using a single algorithm once search commences. As a result, we claim that it is possible to undertake a more focused approach to problem solving, allowing for the correction of bad algorithm choices and for capitalising on opportunities for gain by dynamically changing to more suitable candidates.
GSAT and Dynamic Backtracking
 Journal of Artificial Intelligence Research
, 1994
"... There has been substantial recent interest in two new families of search techniques. One family consists of nonsystematic methods such as gsat; the other contains systematic approaches that use a polynomial amount of justification information to prune the search space. This paper introduces a new te ..."
Abstract

Cited by 386 (15 self)
 Add to MetaCart
There has been substantial recent interest in two new families of search techniques. One family consists of nonsystematic methods such as gsat; the other contains systematic approaches that use a polynomial amount of justification information to prune the search space. This paper introduces a new technique that combines these two approaches. The algorithm allows substantial freedom of movement in the search space but enough information is retained to ensure the systematicity of the resulting analysis. Bounds are given for the size of the justification database and conditions are presented that guarantee that this database will be polynomial in the size of the problem in question. 1 INTRODUCTION The past few years have seen rapid progress in the development of algorithms for solving constraintsatisfaction problems, or csps. Csps arise naturally in subfields of AI from planning to vision, and examples include propositional theorem proving, map coloring and scheduling problems. The probl...
Boosting combinatorial search through randomization
, 1998
"... Unpredictability in the running time of complete search procedures can often be explained by the phenomenon of “heavytailed cost distributions”, meaning that at any time during the experiment there is a nonnegligible probability of hitting a problem that requires exponentially more time to solve t ..."
Abstract

Cited by 361 (35 self)
 Add to MetaCart
Unpredictability in the running time of complete search procedures can often be explained by the phenomenon of “heavytailed cost distributions”, meaning that at any time during the experiment there is a nonnegligible probability of hitting a problem that requires exponentially more time to solve than any that has been encountered before (Gomes et al. 1998a). We present a general method for introducing controlled randomization into complete search algorithms. The “boosted ” search methods provably eliminate heavytails to the right of the median. Furthermore, they can take advantage of heavytails to the left of the median (that is, a nonnegligible chance of very short runs) to dramatically shorten the solution time. We demonstrate speedups of several orders of magnitude for stateoftheart complete search procedures running on hard, realworld problems.
Local Search Strategies for Satisfiability Testing
 DIMACS SERIES IN DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
, 1995
"... It has recently been shown that local search is surprisingly good at finding satisfying assignments for certain classes of CNF formulas [24]. In this paper we demonstrate that the power of local search for satisfiability testing can be further enhanced by employinga new strategy, called "mixed ..."
Abstract

Cited by 311 (28 self)
 Add to MetaCart
It has recently been shown that local search is surprisingly good at finding satisfying assignments for certain classes of CNF formulas [24]. In this paper we demonstrate that the power of local search for satisfiability testing can be further enhanced by employinga new strategy, called "mixed random walk", for escaping from local minima. We present experimental results showing how this strategy allows us to handle formulas that are substantially larger than those that can be solved with basic local search. We also present a detailed comparison of our random walk strategy with simulated annealing. Our results show that mixed random walk is the superior strategy on several classes of computationally difficult problem instances. Finally, we present results demonstrating the effectiveness of local search with walk for solving circuit synthesis and diagnosis problems.
Stable models and an alternative logic programming paradigm
 In The Logic Programming Paradigm: a 25Year Perspective
, 1999
"... In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting ..."
Abstract

Cited by 310 (19 self)
 Add to MetaCart
In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting alternative to more traditional logic programming styles of Horn logic programming, stratified logic programming and logic programming with wellfounded semantics. The proposed approach is based on the interpretation of program clauses as constraints. In this setting programs do not describe a single intended model, but a family of stable models. These stable models encode solutions to the constraint satisfaction problem described by the program. Our approach imposes restrictions on the syntax of logic programs. In particular, function symbols are eliminated from the language. We argue that the resulting logic programming system is wellattuned to problems in the class NP, has a welldefined domain of applications, and an emerging methodology of programming. We point out that what makes the whole approach viable is recent progress in implementations of algorithms to compute stable models of propositional logic programs. 1
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 145 (3 self)
 Add to MetaCart
(Show Context)
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Towards an understanding of hillclimbing procedures for SAT
 In Proceedings of AAAI93
, 1993
"... Recently several local hillclimbing procedures for propositional satisability havebeen proposed, which are able to solve large and di cult problems beyond the reach ofconventional algorithms like DavisPutnam. By the introduction of some new variants of these procedures, we provide strong experimen ..."
Abstract

Cited by 135 (6 self)
 Add to MetaCart
(Show Context)
Recently several local hillclimbing procedures for propositional satisability havebeen proposed, which are able to solve large and di cult problems beyond the reach ofconventional algorithms like DavisPutnam. By the introduction of some new variants of these procedures, we provide strong experimental evidence to support the conjecture that neither greediness nor randomness is important in these procedures. One of the variants introduced seems to o er signi cant improvements over earlier procedures. In addition, we investigate experimentally how their performance depends on their parameters. Our results suggest that runtime scales less than simply exponentially in the problem size. 1
Hyperheuristics: An emerging direction in modern search technology
, 2003
"... This chapter introduces and overviews an emerging methodology in search and optimisation. One of the key aims of these new approaches, which have been termed hyperheuristics, is to raise the level of generality at which optimisation systems can operate. An objective is that hyperheuristics will l ..."
Abstract

Cited by 122 (43 self)
 Add to MetaCart
This chapter introduces and overviews an emerging methodology in search and optimisation. One of the key aims of these new approaches, which have been termed hyperheuristics, is to raise the level of generality at which optimisation systems can operate. An objective is that hyperheuristics will lead to more general systems that are able to handle a wide range of problem domains rather than current metaheuristic technology which tends to be customised to a particular problem or a narrow class of problems. Hyperheuristics are broadly concerned with intelligently choosing the right heuristic or algorithm in a given situation. Of course, a hyperheuristic can be (often is) a (meta)heuristic and it can operate on (meta)heuristics. In a certain sense, a hyperheuristic works at a higher level when compared with the typical application of metaheuristics to optimisation problems, i.e., a hyperheuristic could be thought of as a (meta)heuristic which operates on lower level (meta)heuristics. In this chapter we will introduce the idea and give a brief history of this emerging area. In addition, we will review some of the latest work to be published in the field.
Effective Use of Boolean Satisfiability Procedures in the Formal Verification of Superscalar and VLIW Microprocessors
 Journal of Symbolic Computation
, 2001
"... We compare SATcheckers and decision diagrams on the evaluation of Boolean formulas produced in the formal verification of both correct and buggy versions of superscalar and VLIW microprocessors. We identify one SATchecker that significantly outperforms the rest. We evaluate ways to enhance its per ..."
Abstract

Cited by 101 (17 self)
 Add to MetaCart
(Show Context)
We compare SATcheckers and decision diagrams on the evaluation of Boolean formulas produced in the formal verification of both correct and buggy versions of superscalar and VLIW microprocessors. We identify one SATchecker that significantly outperforms the rest. We evaluate ways to enhance its performance by variations in the generation of the Boolean correctness formulas. We reassess optimizations previously used to speed up the formal verification and probe future challenges.