Results 1 -
2 of
2
Complexity and Expressive Power of Logic Programming
, 1997
"... This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results ..."
Abstract
-
Cited by 366 (57 self)
- Add to MetaCart
This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results on plain logic programming (pure Horn clause programs), more recent results on various important extensions of logic programming are surveyed. These include logic programming with different forms of negation, disjunctive logic programming, logic programming with equality, and constraint logic programming. The complexity of the unification problem is also addressed.
Structural Recursion on Ordered Trees and List-based Complex Objects Expressiveness and PTIME Restrictions
"... Abstract. XML query languages need to provide some mechanism to inspect and manipulate nodes at all levels of an input tree. In this paper we investigate the expressive power provided in this regard by structural recursion. We show that the combination of vertical recursion down a tree combined with ..."
Abstract
-
Cited by 2 (0 self)
- Add to MetaCart
(Show Context)
Abstract. XML query languages need to provide some mechanism to inspect and manipulate nodes at all levels of an input tree. In this paper we investigate the expressive power provided in this regard by structural recursion. We show that the combination of vertical recursion down a tree combined with horizontal recursion across a list of trees gives rise to a robust class of transformations: it captures the class of all primitive recursive queries. Since queries are expected to be computable in at most polynomial time for all practical purposes, we next identify a restriction of structural recursion that captures the polynomial time queries. Although this restriction is semantical in nature, and therefore undecidable, we provide an effective syntax. We also give corresponding results for list-based complex objects. 1