Results 1 - 10
of
275
Vigilante: End-to-End Containment of Internet Worm Epidemics
, 2008
"... Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. ..."
Abstract
-
Cited by 304 (6 self)
- Add to MetaCart
(Show Context)
Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. We propose Vigilante, a new end-to-end architecture to contain worms automatically that addresses these limitations. In Vigilante, hosts detect worms by instrumenting vulnerable programs to analyze infection attempts. We introduce dynamic data-flow analysis: a broad-coverage host-based algorithm that can detect unknown worms by tracking the flow of data from network messages and disallowing unsafe uses of this data. We also show how to integrate other host-based detection mechanisms into the Vigilante architecture. Upon detection, hosts generate self-certifying alerts (SCAs), a new type of security alert that can be inexpensively verified by any vulnerable host. Using SCAs, hosts can cooperate to contain an outbreak, without having to trust each other. Vigilante broadcasts SCAs over an overlay network that propagates alerts rapidly and resiliently. Hosts receiving an SCA protect themselves by generating filters with vulnerability condition slicing: an algorithm that performs dynamic analysis of the vulnerable program to identify control-flow conditions that lead
Towards automatic generation of vulnerability-based signatures
, 2006
"... In this paper we explore the problem of creating vulnerability signatures. A vulnerability signature matches all exploits of a given vulnerability, even polymorphic or metamorphic variants. Our work departs from previous approaches by focusing on the semantics of the program and vulnerability exerci ..."
Abstract
-
Cited by 153 (28 self)
- Add to MetaCart
(Show Context)
In this paper we explore the problem of creating vulnerability signatures. A vulnerability signature matches all exploits of a given vulnerability, even polymorphic or metamorphic variants. Our work departs from previous approaches by focusing on the semantics of the program and vulnerability exercised by a sample exploit instead of the semantics or syntax of the exploit itself. We show the semantics of a vulnerability define a language which contains all and only those inputs that exploit the vulnerability. A vulnerability signature is a representation (e.g., a regular expression) of the vulnerability language. Unlike exploitbased signatures whose error rate can only be empirically measured for known test cases, the quality of a vulnerability signature can be formally quantified for all possible inputs. We provide a formal definition of a vulnerability signature and investigate the computational complexity of creating and matching vulnerability signatures. We also systematically explore the design space of vulnerability signatures. We identify three central issues in vulnerability-signature creation: how a vulnerability signature represents the set of inputs that may exercise a vulnerability, the vulnerability coverage (i.e., number of vulnerable program paths) that is subject to our analysis during signature creation, and how a vulnerability signature is then created for a given representation and coverage. We propose new data-flow analysis and novel adoption of existing techniques such as constraint solving for automatically generating vulnerability signatures. We have built a prototype system to test our techniques. Our experiments show that we can automatically generate a vulnerability signature using a single exploit which is of much higher quality than previous exploit-based signatures. In addition, our techniques have several other security applications, and thus may be of independent interest. 1
Polymorphic Worm Detection Using Structural Information of Executables
- In RAID
, 2005
"... Abstract. Network worms are malicious programs that spread automatically across networks by exploiting vulnerabilities that affect a large number of hosts. Because of the speed at which worms spread to large computer populations, countermeasures based on human reaction time are not feasible. Therefo ..."
Abstract
-
Cited by 149 (11 self)
- Add to MetaCart
(Show Context)
Abstract. Network worms are malicious programs that spread automatically across networks by exploiting vulnerabilities that affect a large number of hosts. Because of the speed at which worms spread to large computer populations, countermeasures based on human reaction time are not feasible. Therefore, recent research has focused on devising new techniques to detect and contain network worms without the need of human supervision. In particular, a number of approaches have been proposed to automatically derive signatures to detect network worms by analyzing a number of worm-related network streams. Most of these techniques, however, assume that the worm code does not change during the infection process. Unfortunately, worms can be polymorphic. That is, they can mutate as they spread across the network. To detect these types of worms, it is necessary to devise new techniques that are able to identify similarities between different mutations of a worm. This paper presents a novel technique based on the structural analysis of binary code that allows one to identify structural similarities between different worm mutations. The approach is based on the analysis of a worm’s control flow graph and introduces an original graph coloring technique that supports a more precise characterization of the worm’s structure. The technique has been used as a basis to implement a worm detection system that is resilient to many of the mechanisms used to evade approaches based on instruction sequences only.
Spamming botnets: signatures and characteristics
- In SIGCOMM
, 2008
"... In this paper, we focus on characterizing spamming botnets by leveraging both spam payload and spam server traffic properties. Towards this goal, we developed a spam signature generation framework called AutoRE to detect botnet-based spam emails and botnet membership. AutoRE does not require pre-cla ..."
Abstract
-
Cited by 120 (14 self)
- Add to MetaCart
(Show Context)
In this paper, we focus on characterizing spamming botnets by leveraging both spam payload and spam server traffic properties. Towards this goal, we developed a spam signature generation framework called AutoRE to detect botnet-based spam emails and botnet membership. AutoRE does not require pre-classified training data or white lists. Moreover, it outputs high quality regular expression signatures that can detect botnet spam with a low false positive rate. Using a three-month sample of emails from Hotmail, AutoRE successfully identified 7,721 botnet-based spam campaigns together with 340,050 unique botnet host IP addresses. Our in-depth analysis of the identified botnets revealed several interesting findings regarding the degree of email obfuscation, properties of botnet IP addresses, sending patterns, and their correlation with network scanning traffic. We believe these observations are useful information in the design of botnet detection schemes.
Fast and Automated Generation of Attack Signatures: A Basis for Building Self-Protecting Servers
, 2005
"... Large-scale attacks, such as those launched by worms and zombie farms, pose a serious threat to our network-centric society. Existing approaches such as software patches are simply unable to cope with the volume and speed with which new vulnerabilities are being discovered. In this paper, we develop ..."
Abstract
-
Cited by 108 (8 self)
- Add to MetaCart
Large-scale attacks, such as those launched by worms and zombie farms, pose a serious threat to our network-centric society. Existing approaches such as software patches are simply unable to cope with the volume and speed with which new vulnerabilities are being discovered. In this paper, we develop a new approach that can provide effective protection against a vast majority of these attacks that exploit memory errors in C/C++ programs. Our approach, called COVERS, uses a forensic analysis of a victim server's memory to correlate attacks to inputs received over the network, and automatically develop a signature that characterizes inputs that carry attacks. The signatures tend to capture characteristics of the underlying vulnerability (e.g., a message field being too long) rather than the characteristics of an attack, which makes them effective against variants of attacks. Our approach introduces low overheads (under 10%), does not require access to source code of the protected server, and has successfully generated signatures for the attacks studied in our experiments, without producing false positives. Since the signatures are generated in tens of milliseconds, they can potentially be distributed quickly over the Internet to filter out (and thus stop) fastspreading worms. Another interesting aspect of our approach is that it can defeat guessing attacks reported against address-space randomization and instruction set randomization techniques. Finally, it increases the capacity of servers to withstand repeated attacks by a factor of 10 or more.
All you ever wanted to know about dynamic taint analysis and forward symbolic execution (but might have been afraid to ask
- In Proceedings of the IEEE Symposium on Security and Privacy
, 2010
"... Abstract—Dynamic taint analysis and forward symbolic execution are quickly becoming staple techniques in security analyses. Example applications of dynamic taint analysis and forward symbolic execution include malware analysis, input filter generation, test case generation, and vulnerability discove ..."
Abstract
-
Cited by 106 (5 self)
- Add to MetaCart
Abstract—Dynamic taint analysis and forward symbolic execution are quickly becoming staple techniques in security analyses. Example applications of dynamic taint analysis and forward symbolic execution include malware analysis, input filter generation, test case generation, and vulnerability discovery. Despite the widespread usage of these two techniques, there has been little effort to formally define the algorithms and summarize the critical issues that arise when these techniques are used in typical security contexts. The contributions of this paper are two-fold. First, we precisely describe the algorithms for dynamic taint analysis and forward symbolic execution as extensions to the run-time semantics of a general language. Second, we highlight important implementation choices, common pitfalls, and considerations when using these techniques in a security context. Keywords-taint analysis, symbolic execution, dynamic analysis I.
Automated classification and analysis of internet malware
- In Proceedings of Recent Advances in Intrusion Detection (RAID’07
, 2007
"... Abstract. Numerous attacks, such as worms, phishing, and botnets, threaten the availability of the Internet, the integrity of its hosts, and the privacy of its users. A core element of defense against these attacks is anti-virus (AV) software—a service that detects, removes, and characterizes these ..."
Abstract
-
Cited by 105 (5 self)
- Add to MetaCart
(Show Context)
Abstract. Numerous attacks, such as worms, phishing, and botnets, threaten the availability of the Internet, the integrity of its hosts, and the privacy of its users. A core element of defense against these attacks is anti-virus (AV) software—a service that detects, removes, and characterizes these threats. The ability of these products to successfully characterize these threats has far-reaching effects—from facilitating sharing across organizations, to detecting the emergence of new threats, and assessing risk in quarantine and cleanup. In this paper, we examine the ability of existing host-based anti-virus products to provide semantically meaningful information about the malicious software and tools (or malware) used by attackers. Using a large, recent collection of malware that spans a variety of attack vectors (e.g., spyware, worms, spam), we show that different AV products characterize malware in ways that are inconsistent across AV products, incomplete across malware, and that fail to be concise in their semantics. To address these limitations, we propose a new classification technique that describes malware behavior in terms of system state changes (e.g., files written, processes created) rather than in sequences or patterns of system calls. To address the sheer volume of malware and diversity of its behavior, we provide a method for automatically categorizing these profiles of malware into groups that reflect similar classes of behaviors and demonstrate how behavior-based clustering provides a more direct and effective way of classifying and analyzing Internet malware. 1
ANAGRAM: A Content Anomaly Detector Resistant To Mimicry Attack
- In Proceedings of the 9th International Symposium on Recent Advances in Intrusion Detection (RAID
, 2006
"... Abstract. In this paper, we present Anagram, a content anomaly detector that models a mixture of high-order n-grams (n> 1) designed to detect anomalous and “suspicious ” network packet payloads. By using higher-order n-grams, Anagram can detect significant anomalous byte sequences and generate ro ..."
Abstract
-
Cited by 104 (15 self)
- Add to MetaCart
(Show Context)
Abstract. In this paper, we present Anagram, a content anomaly detector that models a mixture of high-order n-grams (n> 1) designed to detect anomalous and “suspicious ” network packet payloads. By using higher-order n-grams, Anagram can detect significant anomalous byte sequences and generate robust signatures of validated malicious packet content. The Anagram content models are implemented using highly efficient Bloom filters, reducing space requirements and enabling privacy-preserving cross-site correlation. The sensor models the distinct content flow of a network or host using a semi-supervised training regimen. Previously known exploits, extracted from the signatures of an IDS, are likewise modeled in a Bloom filter and are used during training as well as detection time. We demonstrate that Anagram can identify anomalous traffic with high accuracy and low false positive rates. Anagram’s high-order n-gram analysis technique is also resilient against simple mimicry attacks that blend exploits with “normal ” appearing byte padding, such as the blended polymorphic attack recently demonstrated in [1]. We discuss randomized n-gram models, which further raises the bar and makes it more difficult for attackers to build precise packet structures to evade Anagram even if they know the distribution of the local site content flow. Finally, Anagram’s speed and high detection rate makes it valuable not only as a standalone sensor, but also as a network anomaly flow classifier in an instrumented fault-tolerant host-based environment; this enables significant cost amortization and the possibility of a “symbiotic ” feedback loop that can improve accuracy and reduce false positive rates over time. 1
Hamsa: Fast signature generation for zero-day polymorphicworms with provable attack resilience.
- In S&P,
, 2006
"... Abstract ..."
(Show Context)
On Deriving Unknown Vulnerabilities from Zero-Day Polymorphic and Metamorphic Worm Exploits
- In Proc. 12th ACM Conference on Computer and Communications Security (CCS
, 2005
"... Vulnerabilities that allow worms to hijack the control flow of each host that they spread to are typically discovered months before the worm outbreak, but are also typically discovered by third party researchers. A determined attacker could discover vulnerabilities as easily and create zero-day worm ..."
Abstract
-
Cited by 96 (11 self)
- Add to MetaCart
(Show Context)
Vulnerabilities that allow worms to hijack the control flow of each host that they spread to are typically discovered months before the worm outbreak, but are also typically discovered by third party researchers. A determined attacker could discover vulnerabilities as easily and create zero-day worms for vulnerabilities unknown to network defenses. It is important for an analysis tool to be able to generalize from a new exploit observed and derive protection for the vulnerability. Many researchers have observed that certain predicates of the exploit vector must be present for the exploit to work and that therefore these predicates place a limit on the amount of polymorphism and metamorphism available to the attacker. We formalize this idea and subject it to quantitative analysis with a symbolic execution tool called