Results 1  10
of
137
Dense Estimation and ObjectBased Segmentation of the Optical Flow with Robust Techniques
, 1998
"... In this paper we address the issue of recovering and segmenting the apparent velocity field in sequences of images. As for motion estimation, we minimize an objective function involving two robust terms. The first one cautiously captures the optical flow constraint, while the second (a priori) term ..."
Abstract

Cited by 113 (20 self)
 Add to MetaCart
In this paper we address the issue of recovering and segmenting the apparent velocity field in sequences of images. As for motion estimation, we minimize an objective function involving two robust terms. The first one cautiously captures the optical flow constraint, while the second (a priori) term incorporates a discontinuitypreserving smoothness constraint. To cope with the nonconvex minimization problem thus defined, we design an efficient deterministic multigrid procedure. It converges fast toward estimates of good quality, while revealing the large discontinuity structures of flow fields. We then propose an extension of the model by attaching to it a flexible objectbased segmentation device based on deformable closed curves (different families of curve equipped with different kinds of prior can be easily supported). Experimental results on synthetic and natural sequences are presented, including an analysis of sensitivity to parameter tuning. INdex Terms Closed segmenting cu...
Motion estimation techniques for digital TV: A review and a new contribution
 Proc. IEEE
, 1995
"... The key to high performance in image sequence coding lies in an efficient reduction of the temporal redundancies. For this purpose, motion estimation and compensation techniques have been suc cessfully applied. This paper studies motion estimation algorithms in the context of first generation coding ..."
Abstract

Cited by 98 (1 self)
 Add to MetaCart
The key to high performance in image sequence coding lies in an efficient reduction of the temporal redundancies. For this purpose, motion estimation and compensation techniques have been suc cessfully applied. This paper studies motion estimation algorithms in the context of first generation coding techniques commonly used in digital TV. In this framework, estimating the motion in the scene is not an intrinsic goal. Motion estimation should indeed provide good temporal prediction and simultaneously require low overhead information. More specifically, the aim is to minimize globally the bandwidth corresponding to both the prediction error information and the motion parameters. This paper first clarifies the notion of motion, reviews classical motion estimation tech niques, and outlines new perspectives. Block matching techniques are shown to be the most appropriate in the framework of first generation coding. To overcome the drawbacks characteristic of most block matching techniques, this paper proposes a new locally adaptive multigrid block matching motion estimation technique. This algorithm has been designed taking into account the above aims. It leads to a robust motion field estimation, precise prediction along moving edges and a decreased amount of side information in uniform areas. Furthermore, the algorithm controls the accuracy of the motion estimation procedure in order to optimally balance the amount of information corresponding to the prediction error and to the motion parameters. Experimental results show that the technique results in greatly enhanced visual quality and significant saving in terms of bit rate when compared to classical block matching techniques. I.
Motion competition: a variational approach to piecewise parametric motion segmentation
 Int. J. Comput. Vision
, 2005
"... Abstract. We present a novel variational approach for segmenting the image plane into a set of regions of parametric motion on the basis of two consecutive frames from an image sequence. Our model is based on a conditional probability for the spatiotemporal image gradient, given a particular veloci ..."
Abstract

Cited by 73 (10 self)
 Add to MetaCart
(Show Context)
Abstract. We present a novel variational approach for segmenting the image plane into a set of regions of parametric motion on the basis of two consecutive frames from an image sequence. Our model is based on a conditional probability for the spatiotemporal image gradient, given a particular velocity model, and on a geometric prior on the estimated motion field favoring motion boundaries of minimal length. Exploiting the Bayesian framework, we derive a cost functional which depends on parametric motion models for each of a set of regions and on the boundary separating these regions. The resulting functional can be interpreted as an extension of the MumfordShah functional from intensity segmentation to motion segmentation. In contrast to most alternative approaches, the problems of segmentation and motion estimation are jointly solved by continuous minimization of a single functional. Minimizing this functional with respect to its dynamic variables results in an eigenvalue problem for the motion parameters and in a gradient descent evolution for the motion discontinuity set. We propose two different representations of this motion boundary: an explicit splinebased implementation which can be applied to the motionbased tracking of a single moving object, and an implicit multiphase level set implementation which allows for the segmentation of an arbitrary number of multiply connected moving objects. Numerical results both for simulated ground truth experiments and for realworld sequences demonstrate the capacity of our approach to segment objects based exclusively on their relative motion.
Simultaneous Motion Estimation and Segmentation
, 1997
"... We present a Bayesian framework that combines motion (optical flow) estimation and segmentation based on a representation of the motion field as the sum of a parametric field and a residual field. The parameters describing the parametric component are found by a least squares procedure given the bes ..."
Abstract

Cited by 65 (0 self)
 Add to MetaCart
We present a Bayesian framework that combines motion (optical flow) estimation and segmentation based on a representation of the motion field as the sum of a parametric field and a residual field. The parameters describing the parametric component are found by a least squares procedure given the best estimates of the motion and segmentation fields. The motion field is updated by estimating the minimumnorm residual field given the best estimate of the parametric field, under the constraint that motion field be smooth within each segment. The segmentation field is updated to yield the minimumnorm residual field given the best estimate of the motion field, using Gibbsian priors. The solution to successive optimization problems are obtained using the highest confidence first (HCF) or iterated conditional mode (ICM) optimization methods. Experimental results on real video are shown. 1 Introduction Robust motion estimation and segmentation are fundamental to such applications as multiple...
Hidden Markov measure field models for image segmentation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2003
"... Abstract—Parametric image segmentation consists of finding a label field that defines a partition of an image into a set of nonoverlapping regions and the parameters of the models that describe the variation of some property within each region. A new Bayesian formulation for the solution of this pro ..."
Abstract

Cited by 59 (2 self)
 Add to MetaCart
(Show Context)
Abstract—Parametric image segmentation consists of finding a label field that defines a partition of an image into a set of nonoverlapping regions and the parameters of the models that describe the variation of some property within each region. A new Bayesian formulation for the solution of this problem is presented, based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators for both this field and the model parameters by the minimization of a differentiable function. An efficient minimization algorithm and comparisons with existing methods on synthetic images are presented, as well as examples of realistic applications to the segmentation of Magnetic Resonance volumes and to motion segmentation. Index Terms—Markov random fields, segmentation, motion. 1
Multiple Motion Segmentation With Level Sets
, 2000
"... Segmentation of motion in an image sequence is one of the most challenging problems in image processing, while at the same time one that finds numerous applications. To date, a wealth of approaches to motion segmentation have been proposed. Many of them suffer from the local nature of models used. G ..."
Abstract

Cited by 55 (7 self)
 Add to MetaCart
Segmentation of motion in an image sequence is one of the most challenging problems in image processing, while at the same time one that finds numerous applications. To date, a wealth of approaches to motion segmentation have been proposed. Many of them suffer from the local nature of models used. Global models, such as those based on Markov random fields, perform, in general, better. In this paper, we propose a new approach to motion segmentation that is based on a global model. The novelty of the approach is twofold. First, inspired by recent work of other researchers we formulate the problem as that of region competition, but we solve it using the level set methodology. The key features of a level set representation, as compared to active contours, often used in this context, are its ability to handle variations in the topology of the segmentation and its numerical stability. The second novelty of the paper is the formulation in which, unlike in many other motion segmentation algori...
Estimating Motion in Image Sequences  A tutorial on modeling and computation of 2D motion
 IEEE Signal Processing Magazine
, 1999
"... this paper should be helpful to researchers and practitioners working in the fields of video compression and processing, as well as in computer vision. Although the understanding of issues involved in the computation of motion has significantly increased over the last decade, we are still far from g ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
(Show Context)
this paper should be helpful to researchers and practitioners working in the fields of video compression and processing, as well as in computer vision. Although the understanding of issues involved in the computation of motion has significantly increased over the last decade, we are still far from generic, robust, realtime motion estimation algorithms. The selection of the best motion estimator is still highly dependent on the application. Nevertheless, a broad variety of estimation models, criteria and optimization schemes can be treated in a unified framework presented here, thus allowing a direct comparison and leading to a deeper understanding of the properties of the resulting estimators.
Motion segmentation based on factorization method and discriminant criterion
 in Proc. IEEE Int. Conf. Computer Vision
, 1999
"... A motion segmentation algorithm based on factorization method and discriminant criterion is proposed. This method uses a feature with the most useful similarities for grouping, selected using motion information calculated by factorization method and discriminant criterion. A group is extracted b ..."
Abstract

Cited by 43 (0 self)
 Add to MetaCart
(Show Context)
A motion segmentation algorithm based on factorization method and discriminant criterion is proposed. This method uses a feature with the most useful similarities for grouping, selected using motion information calculated by factorization method and discriminant criterion. A group is extracted based on discriminant analysis for the selected feature’s similarities. The same procedure is applied recursively to the remaining features to extract other groups. This grouping is robust against noise and outliers because features with no useful information are automatically rejected. Numerical computation is simple and stable. No prior knowledge is needed on the number of objects. Experimental results are shown for synthetic data and real image sequences. 1
A Markov Random Field modelbased approach to unsupervised texture segmentation using local and global spatial statistics
, 1993
"... The general problem of unsupervised textured image segmentation remains a fundamental but not entirely solved issue in image analysis. Many studies have proven that statistical modelbased texture segmentation algorithms yield good results provided that the model parameters and the number of region ..."
Abstract

Cited by 42 (4 self)
 Add to MetaCart
The general problem of unsupervised textured image segmentation remains a fundamental but not entirely solved issue in image analysis. Many studies have proven that statistical modelbased texture segmentation algorithms yield good results provided that the model parameters and the number of regions be known a priori. In this paper, we present an unsupervised texture segmentation method which does not require a priori knowledge about the different texture regions, their parameters, or the number of available texture classes. The proposed algorithm relies on the analysis of local and global second and higher order spatial statistics of the original images. The segmentation map is modeled using an augmentedstate Markov Random Field, including an outlier class which enables dynamic creation of new regions during the optimization process. A bayesian estimate of this map is computed using a deterministic relaxation algorithm. The whole segmentation procedure is controlled by one single p...
Efficient MRF deformation model for nonrigid image matching
 In IEEE Transactions on International Conference on Pattern Recognition
, 2007
"... We propose a novel MRFbased model for deformable image matching. Given two images, the task is to estimate a mapping from one image to the other maximizing the quality of the match. We consider mappings defined by a discrete deformation field constrained to preserve 2D continuity. We pose the task ..."
Abstract

Cited by 37 (0 self)
 Add to MetaCart
(Show Context)
We propose a novel MRFbased model for deformable image matching. Given two images, the task is to estimate a mapping from one image to the other maximizing the quality of the match. We consider mappings defined by a discrete deformation field constrained to preserve 2D continuity. We pose the task as finding MAP configurations of a pairwise MRF. We propose a more compact MRF representation of the problem which leads to a weaker, though computationally more tractable, linear programming relaxation – the approximation technique we choose to apply. The number of dual LP variables grows linearly with the search window side, rather than quadratically as in previous approaches. To solve the relaxed problem (suboptimally), we apply TRWS (Sequential TreeReweighted Message passing) algorithm [13, 5]. Using our representation and the chosen optimization scheme, we are able to match much wider deformations than was considered previously in global optimization framework. We further elaborate on continuity and data terms to achieve more appropriate description of smooth deformations. The performance of our technique is demonstrated on both synthetic and realworld experiments. 1.