Results 1 
3 of
3
Graph Isomorphism is Low for ZPP(NP) and other Lowness results
, 2000
"... We show the following new lowness results for the probabilistic class ZPP NP . { The class AM \ coAM is low for ZPP NP . As a consequence it follows that Graph Isomorphism and several grouptheoretic problems known to be in AM \ coAM are low for ZPP NP . { The class IP[P=poly], consisting of sets th ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
(Show Context)
We show the following new lowness results for the probabilistic class ZPP NP . { The class AM \ coAM is low for ZPP NP . As a consequence it follows that Graph Isomorphism and several grouptheoretic problems known to be in AM \ coAM are low for ZPP NP . { The class IP[P=poly], consisting of sets that have interactive proof systems with honest provers in P=poly, is also low for ZPP NP . We consider lowness properties of nonuniform function classes, namely, NPMV=poly, NPSV=poly, NPMV t =poly, and NPSV t =poly. Specifically, we show that { Sets whose characteristic functions are in NPSV=poly and that have program checkers (in the sense of Blum and Kannan [8]) are low for AM and ZPP NP . { Sets whose characteristic functions are in NPMV t =poly are low for p 2 .
New Lowness Results for ZPP^NP and other Complexity Classes
, 2000
"... We show that the class AM\coAM is low for ZPP . As a consequence, it follows that Graph Isomorphism and several grouptheoretic problems are low for ZPP . We also ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
We show that the class AM\coAM is low for ZPP . As a consequence, it follows that Graph Isomorphism and several grouptheoretic problems are low for ZPP . We also
Some Results on Derandomization
 Theory of Computing Systems
"... We show several results about derandomization including 1. If NP is easy on average then e#cient pseudorandom generators exist and P = BPP. ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
We show several results about derandomization including 1. If NP is easy on average then e#cient pseudorandom generators exist and P = BPP.