Results 1  10
of
387
Progressive Meshes
"... Highly detailed geometric models are rapidly becoming commonplace in computer graphics. These models, often represented as complex triangle meshes, challenge rendering performance, transmission bandwidth, and storage capacities. This paper introduces the progressive mesh (PM) representation, a new s ..."
Abstract

Cited by 1321 (11 self)
 Add to MetaCart
Highly detailed geometric models are rapidly becoming commonplace in computer graphics. These models, often represented as complex triangle meshes, challenge rendering performance, transmission bandwidth, and storage capacities. This paper introduces the progressive mesh (PM) representation, a new scheme for storing and transmitting arbitrary triangle meshes. This efficient, lossless, continuousresolution representation addresses several practical problems in graphics: smooth geomorphing of levelofdetail approximations, progressive transmission, mesh compression, and selective refinement. In addition, we present a new mesh simplification procedure for constructing a PM representation from an arbitrary mesh. The goal of this optimization procedure is to preserve not just the geometry of the original mesh, but more importantly its overall appearance as defined by its discrete and scalar appearance attributes such as material identifiers, color values, normals, and texture coordinates. We demonstrate construction of the PM representation and its applications using several practical models.
A Signal Processing Approach To Fair Surface Design
, 1995
"... In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fai ..."
Abstract

Cited by 668 (15 self)
 Add to MetaCart
In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fairing, to lowpass filtering. We describe a very simple surface signal lowpass filter algorithm that applies to surfaces of arbitrary topology. As opposed to other existing optimizationbased fairing methods, which are computationally more expensive, this is a linear time and space complexity algorithm. With this algorithm, fairing very large surfaces, such as those obtained from volumetric medical data, becomes affordable. By combining this algorithm with surface subdivision methods we obtain a very effective fair surface design technique. We then extend the analysis, and modify the algorithm accordingly, to accommodate different types of constraints. Some constraints can be imposed without any modification of the algorithm, while others require the solution of a small associated linear system of equations. In particular, vertex location constraints, vertex normal constraints, and surface normal discontinuities across curves embedded in the surface, can be imposed with this technique. CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/image generation  display algorithms; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling  curve, surface, solid, and object representations;J.6[Com puter Applications]: ComputerAided Engineering  computeraided design General Terms: Algorithms, Graphics. 1
Multiresolution Analysis of Arbitrary Meshes
, 1995
"... In computer graphics and geometric modeling, shapes are often represented by triangular meshes. With the advent of laser scanning systems, meshes of extreme complexity are rapidly becoming commonplace. Such meshes are notoriously expensive to store, transmit, render, and are awkward to edit. Multire ..."
Abstract

Cited by 605 (16 self)
 Add to MetaCart
(Show Context)
In computer graphics and geometric modeling, shapes are often represented by triangular meshes. With the advent of laser scanning systems, meshes of extreme complexity are rapidly becoming commonplace. Such meshes are notoriously expensive to store, transmit, render, and are awkward to edit. Multiresolution analysis offers a simple, unified, and theoretically sound approach to dealing with these problems. Lounsbery et al. have recently developed a technique for creating multiresolution representations for a restricted class of meshes with subdivision connectivity. Unfortunately, meshes encountered in practice typically do not meet this requirement. In this paper we present a method for overcoming the subdivision connectivity restriction, meaning that completely arbitrary meshes can now be converted to multiresolution form. The method is based on the approximation of an arbitrary initial mesh M by a mesh M that has subdivision connectivity and is guaranteed to be within a specified tolerance. The key
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract

Cited by 541 (16 self)
 Add to MetaCart
(Show Context)
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a faster, inplace calculation of the wavelet transform. Several examples are included. Key words. wavelet, multiresolution, second generation wavelet, lifting scheme AMS subject classifications. 42C15 1. Introduction. Wavelets form a versatile tool for representing general functions or data sets. Essentially we can think of them as data building blocks. Their fundamental property is that they allow for representations which are efficient and which can be computed fast. In other words, wavelets are capable of quickly capturing the essence of a data set with only a small set of coefficients. This is based on the fact that most data sets have correlation both in time (or space) and frequenc...
Geometry images
 IN PROC. 29TH SIGGRAPH
, 2002
"... Surface geometry is often modeled with irregular triangle meshes. The process of remeshing refers to approximating such geometry using a mesh with (semi)regular connectivity, which has advantages for many graphics applications. However, current techniques for remeshing arbitrary surfaces create onl ..."
Abstract

Cited by 349 (25 self)
 Add to MetaCart
(Show Context)
Surface geometry is often modeled with irregular triangle meshes. The process of remeshing refers to approximating such geometry using a mesh with (semi)regular connectivity, which has advantages for many graphics applications. However, current techniques for remeshing arbitrary surfaces create only semiregular meshes. The original mesh is typically decomposed into a set of disklike charts, onto which the geometry is parametrized and sampled. In this paper, we propose to remesh an arbitrary surface onto a completely regular structure we call a geometry image. It captures geometry as a simple 2D array of quantized points. Surface signals like normals and colors are stored in similar 2D arrays using the same implicit surface parametrization — texture coordinates are absent. To create a geometry image, we cut an arbitrary mesh along a network of edge paths, and parametrize the resulting single chart onto a square. Geometry images can be encoded using traditional image compression algorithms, such as waveletbased coders.
Spherical Wavelets: Efficiently Representing Functions on the Sphere
, 1995
"... Wavelets have proven to be powerful bases for use in numerical analysis and signal processing. Their power lies in the fact that they only require a small number of coefficients to represent general functions and large data sets accurately. This allows compression and efficient computations. Classic ..."
Abstract

Cited by 284 (14 self)
 Add to MetaCart
Wavelets have proven to be powerful bases for use in numerical analysis and signal processing. Their power lies in the fact that they only require a small number of coefficients to represent general functions and large data sets accurately. This allows compression and efficient computations. Classical constructions have been limited to simple domains such as intervals and rectangles. In this paper we present a wavelet construction for scalar functions defined on the sphere. We show how biorthogonal wavelets with custom properties can be constructed with the lifting scheme. The bases are extremely easy to implement and allow fully adaptive subdivisions. We give examples of functions defined on the sphere, such as topographic data, bidirectional reflection distribution functions, and illumination, and show how they can be efficiently represented with spherical wavelets.
MAPS: Multiresolution Adaptive Parameterization of Surfaces
, 1998
"... We construct smooth parameterizations of irregular connectivity triangulations of arbitrary genus 2manifolds. Our algorithm uses hierarchical simplification to efficiently induce a parameterization of the original mesh over a base domain consisting of a small number of triangles. This initial param ..."
Abstract

Cited by 273 (13 self)
 Add to MetaCart
We construct smooth parameterizations of irregular connectivity triangulations of arbitrary genus 2manifolds. Our algorithm uses hierarchical simplification to efficiently induce a parameterization of the original mesh over a base domain consisting of a small number of triangles. This initial parameterization is further improved through a hierarchical smoothing procedure based on Loop subdivision applied in the parameter domain. Our method supports both fully automatic and user constrained operations. In the latter, we accommodate point and edge constraints to force the align # wailee@cs.princeton.edu + wim@belllabs.com # ps@cs.caltech.edu cowsar@belllabs.com dpd@cs.princeton.edu ment of isoparameter lines with desired features. We show how to use the parameterization for fast, hierarchical subdivision connectivity remeshing with guaranteed error bounds. The remeshing algorithm constructs an adaptively subdivided mesh directly without first resorting to uniform subdivision followed by subsequent sparsification. It thus avoids the exponential cost of the latter. Our parameterizations are also useful for texture mapping and morphing applications, among others.
Progressive Geometry Compression
, 2000
"... We propose a new progressive compression scheme for arbitrary topology, highly detailed and densely sampled meshes arising from geometry scanning. We observe that meshes consist of three distinct components: geometry, parameter, and connectivity information. The latter two do not contribute to the r ..."
Abstract

Cited by 244 (16 self)
 Add to MetaCart
We propose a new progressive compression scheme for arbitrary topology, highly detailed and densely sampled meshes arising from geometry scanning. We observe that meshes consist of three distinct components: geometry, parameter, and connectivity information. The latter two do not contribute to the reduction of error in a compression setting. Using semiregular meshes, parameter and connectivity information can be virtually eliminated. Coupled with semiregular wavelet transforms, zerotree coding, and subdivision based reconstruction we see improvements in error by a factor four (12dB) compared to other progressive coding schemes. CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling  hierarchy and geometric transformations; G.1.2 [Numerical Analysis]: Approximation  approximation of surfaces and contours, wavelets and fractals; I.4.2 [Image Processing and Computer Vision]: Compression (Coding)  Approximate methods Additional K...
Survey of Polygonal Surface Simplification Algorithms
, 1997
"... This paper surveys methods for simplifying and approximating polygonal surfaces. A polygonal surface is a piecewiselinear surface in 3D defined by a set of polygons ..."
Abstract

Cited by 228 (3 self)
 Add to MetaCart
This paper surveys methods for simplifying and approximating polygonal surfaces. A polygonal surface is a piecewiselinear surface in 3D defined by a set of polygons
A Hierarchical Approach to Interactive Motion Editing for Humanlike Figures
, 1999
"... This paper presents a technique for adapting existing motion of a humanlike character to have the desired features that are specified by a set of constraints. This problem can be typically formulated as a spacetime constraint problem. Our approach combines a hierarchical curve fitting technique wit ..."
Abstract

Cited by 227 (15 self)
 Add to MetaCart
This paper presents a technique for adapting existing motion of a humanlike character to have the desired features that are specified by a set of constraints. This problem can be typically formulated as a spacetime constraint problem. Our approach combines a hierarchical curve fitting technique with a new inverse kinematics solver. Using the kinematics solver, we can adjust the configuration of an articulated figure to meet the constraints in each frame. Through the fitting technique, the motion displacement of every joint at each constrained frame is interpolated and thus smoothly propagated to frames. We are able to adaptively add motion details to satisfy the constraints within a specified tolerance by adopting a multilevel Bspline representation which also provides a speedup for the interpolation. The performance of our system is further enhanced by the new inverse kinematics solver. We present a closedform solution to compute the joint angles of a limb linkage. This analytical m...