Results 1  10
of
1,355
A theory for multiresolution signal decomposition : the wavelet representation
 IEEE Transaction on Pattern Analysis and Machine Intelligence
, 1989
"... AbstractMultiresolution representations are very effective for analyzing the information content of images. We study the properties of the operator which approximates a signal at a given resolution. We show that the difference of information between the approximation of a signal at the resolutions ..."
Abstract

Cited by 3460 (12 self)
 Add to MetaCart
AbstractMultiresolution representations are very effective for analyzing the information content of images. We study the properties of the operator which approximates a signal at a given resolution. We show that the difference of information between the approximation of a signal at the resolutions 2 ’ + ’ and 2jcan be extracted by decomposing this signal on a wavelet orthonormal basis of L*(R”). In LL(R), a wavelet orthonormal basis is a family of functions ( @ w (2’ ~n)),,,“jEZt, which is built by dilating and translating a unique function t+r (xl. This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror lilters. For images, the wavelet representation differentiates several spatial orientations. We study the application of this representation to data compression in image coding, texture discrimination and fractal analysis. Index TermsCoding, fractals, multiresolution pyramids, quadrature mirror filters, texture discrimination, wavelet transform. I I.
Orthonormal bases of compactly supported wavelets
, 1993
"... Several variations are given on the construction of orthonormal bases of wavelets with compact support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp. 90 ..."
Abstract

Cited by 2182 (27 self)
 Add to MetaCart
Several variations are given on the construction of orthonormal bases of wavelets with compact support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp. 909996].
A taxonomy and evaluation of dense twoframe stereo correspondence algorithms
 International Journal of Computer Vision
, 2002
"... Abstract. Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, twoframe ..."
Abstract

Cited by 1537 (23 self)
 Add to MetaCart
Abstract. Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, twoframe stereo methods. Our taxonomy is designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a standalone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms. We have also produced several new multiframe stereo data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a comparative evaluation of a large set of today’s bestperforming stereo algorithms.
Performance of optical flow techniques
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1994
"... While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, ..."
Abstract

Cited by 1324 (32 self)
 Add to MetaCart
(Show Context)
While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, matching, energybased and phasebased methods. Our comparisons are primarily empirical, and concentrate on the accuracy, reliability and density of the velocity measurements; they show that performance can differ significantly among the techniques we implemented.
The Design and Use of Steerable Filters
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1991
"... Oriented filters are useful in many early vision and image processing tasks. One often needs to apply the same filter, rotated to different angles under adaptive control, or wishes to calculate the filter response at various orientations. We present an efficient architecture to synthesize filters of ..."
Abstract

Cited by 1079 (11 self)
 Add to MetaCart
Oriented filters are useful in many early vision and image processing tasks. One often needs to apply the same filter, rotated to different angles under adaptive control, or wishes to calculate the filter response at various orientations. We present an efficient architecture to synthesize filters of arbitrary orientations from linear combinations of basis filters, allowing one to adaptively "steer" a filter to any orientation, and to determine analytically the filter output as a function of orientation.
Quantization
 IEEE TRANS. INFORM. THEORY
, 1998
"... The history of the theory and practice of quantization dates to 1948, although similar ideas had appeared in the literature as long ago as 1898. The fundamental role of quantization in modulation and analogtodigital conversion was first recognized during the early development of pulsecode modula ..."
Abstract

Cited by 877 (12 self)
 Add to MetaCart
The history of the theory and practice of quantization dates to 1948, although similar ideas had appeared in the literature as long ago as 1898. The fundamental role of quantization in modulation and analogtodigital conversion was first recognized during the early development of pulsecode modulation systems, especially in the 1948 paper of Oliver, Pierce, and Shannon. Also in 1948, Bennett published the first highresolution analysis of quantization and an exact analysis of quantization noise for Gaussian processes, and Shannon published the beginnings of rate distortion theory, which would provide a theory for quantization as analogtodigital conversion and as data compression. Beginning with these three papers of fifty years ago, we trace the history of quantization from its origins through this decade, and we survey the fundamentals of the theory and many of the popular and promising techniques for quantization.
A saliencybased search mechanism for overt and covert shifts of visual attention
, 2000
"... ..."
(Show Context)
Learning lowlevel vision
 International Journal of Computer Vision
, 2000
"... We show a learningbased method for lowlevel vision problems. We setup a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently prop ..."
Abstract

Cited by 586 (31 self)
 Add to MetaCart
(Show Context)
We show a learningbased method for lowlevel vision problems. We setup a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently propagate image information. Monte Carlo simulations justify this approximation. We apply this to the \superresolution &quot; problem (estimating high frequency details from a lowresolution image), showing good results. For the motion estimation problem, we show resolution of the aperture problem and llingin arising from application of the same probabilistic machinery.
Shiftable Multiscale Transforms
, 1992
"... Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavel ..."
Abstract

Cited by 557 (36 self)
 Add to MetaCart
(Show Context)
Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavelet transforms are also unstable with respect to dilations of the input signal, and in two dimensions, rotations of the input signal. We formalize these problems by defining a type of translation invariance that we call "shiftability". In the spatial domain, shiftability corresponds to a lack of aliasing; thus, the conditions under which the property holds are specified by the sampling theorem. Shiftability may also be considered in the context of other domains, particularly orientation and scale. We explore "jointly shiftable" transforms that are simultaneously shiftable in more than one domain. Two examples of jointly shiftable transforms are designed and implemented: a onedimensional tran...
The Contourlet Transform: An Efficient Directional Multiresolution Image Representation
 IEEE TRANSACTIONS ON IMAGE PROCESSING
"... The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure t ..."
Abstract

Cited by 510 (20 self)
 Add to MetaCart
The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure that is key in visual information. The main challenge in exploring geometry in images comes from the discrete nature of the data. Thus, unlike other approaches, such as curvelets, that first develop a transform in the continuous domain and then discretize for sampled data, our approach starts with a discretedomain construction and then studies its convergence to an expansion in the continuous domain. Specifically, we construct a discretedomain multiresolution and multidirection expansion using nonseparable filter banks, in much the same way that wavelets were derived from filter banks. This construction results in a flexible multiresolution, local, and directional image expansion using contour segments, and thus it is named the contourlet transform. The discrete contourlet transform has a fast iterated filter bank algorithm that requires an order N operations for Npixel images. Furthermore, we establish a precise link between the developed filter bank and the associated continuousdomain contourlet expansion via a directional multiresolution analysis framework. We show that with parabolic scaling and sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise smooth functions with discontinuities along twice continuously differentiable curves. Finally, we show some numerical experiments demonstrating the potential of contourlets in several image processing applications.