Results 1  10
of
214
The strength of weak learnability
 MACHINE LEARNING
, 1990
"... This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distributionfree (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a Source of examples of the unknown concept, the learner with high prob ..."
Abstract

Cited by 871 (26 self)
 Add to MetaCart
(Show Context)
This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distributionfree (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a Source of examples of the unknown concept, the learner with high probability is able to output an hypothesis that is correct on all but an arbitrarily small fraction of the instances. The concept class is weakly learnable if the learner can produce an hypothesis that performs only slightly better than random guessing. In this paper, it is shown that these two notions of learnability are equivalent. A method is described for converting a weak learning algorithm into one that achieves arbitrarily high accuracy. This construction may have practical applications as a tool for efficiently converting a mediocre learning algorithm into one that performs extremely well. In addition, the construction has some interesting theoretical consequences, including a set of general upper bounds on the complexity of any strong learning algorithm as a function of the allowed error e.
Learnability in Optimality Theory
, 1995
"... In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given gr ..."
Abstract

Cited by 529 (35 self)
 Add to MetaCart
(Show Context)
In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given grammatical module. We decompose the learning problem and present formal results for a central subproblem, deducing the constraint ranking particular to a target language, given structural descriptions of positive examples. The structure imposed on the space of possible grammars by Optimality Theory allows efficient convergence to a correct grammar. We discuss implications for learning from overt data only, as well as other learning issues. We argue that Optimality Theory promotes confluence of the demands of more effective learnability and deeper linguistic explanation.
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 475 (67 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae w.r.t the vertex set). Our graph property testing algorithms are probabilistic and make assertions which are correct with high probability, utilizing only poly(1=ffl) edgequeries into the graph, where ffl is the distance parameter. Moreover, the property testing algorithms can be used to efficiently (i.e., in time linear in the number of vertices) construct partitions of the graph which corre...
Efficient noisetolerant learning from statistical queries
 JOURNAL OF THE ACM
, 1998
"... In this paper, we study the problem of learning in the presence of classification noise in the probabilistic learning model of Valiant and its variants. In order to identify the class of “robust” learning algorithms in the most general way, we formalize a new but related model of learning from stat ..."
Abstract

Cited by 353 (5 self)
 Add to MetaCart
(Show Context)
In this paper, we study the problem of learning in the presence of classification noise in the probabilistic learning model of Valiant and its variants. In order to identify the class of “robust” learning algorithms in the most general way, we formalize a new but related model of learning from statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual examples of the unknown target function, but is given access to an oracle providing estimates of probabilities over the sample space of random examples. One of our main results shows that any class of functions learnable from statistical queries is in fact learnable with classification noise in Valiant’s model, with a noise rate approaching the informationtheoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing that practically every class learnable in Valiant’s model and its variants can also be learned in the new model (and thus can be learned in the presence of noise). A notable exception to this statement is the class of parity functions, which we prove is not learnable from statistical queries, and for which no noisetolerant algorithm is known.
Cryptographic Limitations on Learning Boolean Formulae and Finite Automata
 PROCEEDINGS OF THE TWENTYFIRST ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1989
"... In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntact ..."
Abstract

Cited by 347 (14 self)
 Add to MetaCart
In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntactic form in which the learner chooses to represent its hypotheses. Our methods reduce the problems of cracking a number of wellknown publickey cryptosystems to the learning problems. We prove that a polynomialtime learning algorithm for Boolean formulae, deterministic finite automata or constantdepth threshold circuits would have dramatic consequences for cryptography and number theory: in particular, such an algorithm could be used to break the RSA cryptosystem, factor Blum integers (composite numbers equivalent to 3 modulo 4), and detect quadratic residues. The results hold even if the learning algorithm is only required to obtain a slight advantage in prediction over random guessing. The techniques used demonstrate an interesting duality between learning and cryptography. We also apply our results to obtain strong intractability results for approximating a generalization of graph coloring.
Toward efficient agnostic learning
 In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
, 1992
"... Abstract. In this paper we initiate an investigation of generalizations of the Probably Approximately Correct (PAC) learning model that attempt to significantly weaken the target function assumptions. The ultimate goal in this direction is informally termed agnostic learning, in which we make virtua ..."
Abstract

Cited by 231 (8 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we initiate an investigation of generalizations of the Probably Approximately Correct (PAC) learning model that attempt to significantly weaken the target function assumptions. The ultimate goal in this direction is informally termed agnostic learning, in which we make virtually no assumptions on the target function. The name derives from the fact that as designers of learning algorithms, we give up the belief that Nature (as represented by the target function) has a simple or succinct explanation. We give a number of positive and negative results that provide an initial outline of the possibilities for agnostic learning. Our results include hardness results for the most obvious generalization of the PAC model to an agnostic setting, an efficient and general agnostic learning method based on dynamic programming, relationships between loss functions for agnostic learning, and an algorithm for a learning problem that involves hidden variables.
Efficient Distributionfree Learning of Probabilistic Concepts
 Journal of Computer and System Sciences
, 1993
"... In this paper we investigate a new formal model of machine learning in which the concept (boolean function) to be learned may exhibit uncertain or probabilistic behaviorthus, the same input may sometimes be classified as a positive example and sometimes as a negative example. Such probabilistic c ..."
Abstract

Cited by 214 (8 self)
 Add to MetaCart
(Show Context)
In this paper we investigate a new formal model of machine learning in which the concept (boolean function) to be learned may exhibit uncertain or probabilistic behaviorthus, the same input may sometimes be classified as a positive example and sometimes as a negative example. Such probabilistic concepts (or pconcepts) may arise in situations such as weather prediction, where the measured variables and their accuracy are insufficient to determine the outcome with certainty. We adopt from the Valiant model of learning [27] the demands that learning algorithms be efficient and general in the sense that they perform well for a wide class of pconcepts and for any distribution over the domain. In addition to giving many efficient algorithms for learning natural classes of pconcepts, we study and develop in detail an underlying theory of learning pconcepts. 1 Introduction Consider the following scenarios: A meteorologist is attempting to predict tomorrow's weather as accurately as pos...
Weakly Learning DNF and Characterizing Statistical Query Learning Using Fourier Analysis
 IN PROCEEDINGS OF THE TWENTYSIXTH ANNUAL SYMPOSIUM ON THEORY OF COMPUTING
, 1994
"... We present new results on the wellstudied problem of learning DNF expressions. We prove that an algorithm due to Kushilevitz and Mansour [13] can be used to weakly learn DNF formulas with membership queries with respect to the uniform distribution. This is the rst positive result known for learn ..."
Abstract

Cited by 130 (22 self)
 Add to MetaCart
We present new results on the wellstudied problem of learning DNF expressions. We prove that an algorithm due to Kushilevitz and Mansour [13] can be used to weakly learn DNF formulas with membership queries with respect to the uniform distribution. This is the rst positive result known for learning general DNF in polynomial time in a nontrivial model. Our results should be contrasted with those of Kharitonov [12], who proved that AC 0 is not eciently learnable in this model based on cryptographic assumptions. We also present ecient learning algorithms in various models for the readk and SATk subclasses of DNF. We then turn our attention to the recently introduced statistical query model of learning [9]. This model is a restricted version of the popular Probably Approximately Correct (PAC) model, and practically every PAC learning algorithm falls into the statistical query model [9]. We prove that DNF and decision trees are not even weakly learnable in polynomial time in this model. This result is informationtheoretic and therefore does not rely on any unproven assumptions, and demonstrates that no straightforward modication of the existing algorithms for learning various restricted forms of DNF and decision trees will solve the general problem. These lower bounds are a corollary of a more general characterization of the complexity of statistical query learning in terms of the number of uncorrelated functions in the concept class. The underlying tool for all of our results is the Fourier analysis of the concept class to be learned.
From Boolean to Probabilistic Boolean Networks as Models of Genetic Regulatory Networks
 Proc. IEEE
, 2002
"... Mathematical and computational modeling of genetic regulatory networks promises to uncover the fundamental principles governing biological systems in an integrarive and holistic manner. It also paves the way toward the development of systematic approaches for effective therapeutic intervention in di ..."
Abstract

Cited by 124 (23 self)
 Add to MetaCart
(Show Context)
Mathematical and computational modeling of genetic regulatory networks promises to uncover the fundamental principles governing biological systems in an integrarive and holistic manner. It also paves the way toward the development of systematic approaches for effective therapeutic intervention in disease. The central theme in this paper is the Boolean formalism as a building block for modeling complex, largescale, and dynamical networks of genetic interactions. We discuss the goals of modeling genetic networks as well as the data requirements. The Boolean formalism is justified from several points of view. We then introduce Boolean networks and discuss their relationships to nonlinear digital filters. The role of Boolean networks in understanding cell differentiation and cellular functional states is discussed. The inference of Boolean networks from real gene expression data is considered from the viewpoints of computational learning theory and nonlinear signal processing, touching on computational complexity of learning and robustness. Then, a discussion of the need to handle uncertainty in a probabilistic framework is presented, leading to an introduction of probabilistic Boolean networks and their relationships to Markov chains. Methods for quantifying the influence of genes on other genes are presented. The general question of the potential effect of individual genes on the global dynamical network behavior is considered using stochastic perturbation analysis. This discussion then leads into the problem of target identification for therapeutic intervention via the development of several computational tools based on firstpassage times in Markov chains. Examples from biology are presented throughout the paper. 1