Results 1 -
5 of
5
Virus-encoded proteinases and proteolytic processing in the Nidovirales
- J. Gen. Virol
, 2000
"... On the basis of similarities in their genome organization and replication strategy, RNA viruses can now be classified into ‘supergroups ’ that often include both animal and plant ..."
Abstract
-
Cited by 105 (29 self)
- Add to MetaCart
On the basis of similarities in their genome organization and replication strategy, RNA viruses can now be classified into ‘supergroups ’ that often include both animal and plant
The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses
- Semin Virol
, 1997
"... Viruses in the families Arteriviridae and Coronaviridae have enveloped virions which contain nonseg-mented, positive-stranded RNA, but the constituent genera differ markedly in genetic complexity and virion structure. Nevertheless, there are striking resemblances among the viruses in the organizatio ..."
Abstract
-
Cited by 49 (11 self)
- Add to MetaCart
(Show Context)
Viruses in the families Arteriviridae and Coronaviridae have enveloped virions which contain nonseg-mented, positive-stranded RNA, but the constituent genera differ markedly in genetic complexity and virion structure. Nevertheless, there are striking resemblances among the viruses in the organization and expression of their genomes, and sequence conservation among the polymerase polyproteins strongly suggests that they have a common ancestry. On this basis, the International Committee on Taxonomy of Viruses recently established a new order, Nidovirales, to contain the two families. Here, the common traits and distinguishing features of the Nidovirales are reviewed. r 1997 Academic Press KEY WORDS: arterivirus; coronavirus; torovirus; polyprotein processing; RNA recombination.
Proteolytic processing of the coronavirus infectious bronchitis virus 1a polyprotein: identification of a 10-kilodalton polypeptide and determination of its cleavage sites
- J
, 1997
"... Proteolytic processing of the polyprotein encoded by mRNA 1 is an essential step in coronavirus RNA replication and gene expression. We have previously reported that an open reading frame (ORF) 1a-specific proteinase of the picornavirus 3C proteinase group is involved in processing of the coronaviru ..."
Abstract
-
Cited by 10 (3 self)
- Add to MetaCart
(Show Context)
Proteolytic processing of the polyprotein encoded by mRNA 1 is an essential step in coronavirus RNA replication and gene expression. We have previously reported that an open reading frame (ORF) 1a-specific proteinase of the picornavirus 3C proteinase group is involved in processing of the coronavirus infectious bronchitis virus (IBV) 1a/1b polyprotein, leading to the formation of a mature viral protein of 100 kDa. We report here the identification of a novel 10-kDa polypeptide and the involvement of the 3C-like proteinase in processing of the ORF 1a polyprotein to produce the 10-kDa protein species. By using a region-specific antiserum, V47, raised against a bacterial-viral fusion protein containing IBV sequence encoded between nucleotides 11488 and 12600, the 10-kDa polypeptide was detected in lysates from both IBV-infected and plasmid DNA-transfected Vero cells. Coexpression, deletion, and mutagenesis studies showed that this novel polypeptide was encoded by ORF 1a from nucleotide 11545 to 11878 and was cleaved from the 1a polyprotein by the 3C-like proteinase domain. Evidence presented suggested that a previously predicted Q-S (Q3783S3784) dipeptide bond encoded by ORF 1a between nucleotides 11875 and 11880 was responsible for the release of the C terminus of the 10-kDa polypeptide and that a novel Q-N (Q3672N3673) dipeptide bond encoded between nucleotides 11542 and 11547 was responsible for the release of the N terminus of the 10-kDa polypeptide. Six mRNA species are produced in cells infected with the
The Cellular RNA Helicase DDX1 Interacts with Coronavirus
, 2010
"... The involvement of host proteins in the replication and transcription of viral RNA is a poorly understood area for many RNA viruses. For coronaviruses, it was long speculated that replication of the giant RNA genome and transcription of multiple subgenomic mRNA species by a unique discontinuous tran ..."
Abstract
- Add to MetaCart
The involvement of host proteins in the replication and transcription of viral RNA is a poorly understood area for many RNA viruses. For coronaviruses, it was long speculated that replication of the giant RNA genome and transcription of multiple subgenomic mRNA species by a unique discontinuous transcription mechanism may require host cofactors. To search for such cellular proteins, yeast two-hybrid screening was carried out by using the nonstructural protein 14 (nsp14) from the coronavirus infectious bronchitis virus (IBV) as a bait protein, leading to the identification of DDX1, a cellular RNA helicase in the DExD/H helicase family, as a potential interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation assays with cells coexpressing the two proteins and with IBV-infected cells. Furthermore, the endogenous DDX1 protein was found to be relocated from the nucleus to the cytoplasm in IBV-infected cells. In addition to its interaction with IBV nsp14, DDX1 could also interact with the nsp14 protein from severe acute respiratory syndrome coronavirus (SARS-CoV), suggesting that interaction with DDX1 may be a general feature of coronavirus nsp14. The interacting domains were mapped to the C-terminal region of DDX1 containing motifs V and VI and to the N-terminal portion of nsp14. Manipulation of DDX1 expression, either by small interfering RNA-induced knockdown or by overexpression of a mutant DDX1 protein, confirmed that this interaction may enhance IBV replication. This study reveals that DDX1 contributes to efficient coronavirus replication in cell
the Coronavirus Infectious Bronchitis Virus 1a Polyprotein
, 2001
"... This article cites 45 articles, 27 of which can be accessed free ..."
(Show Context)