Results 1 -
5 of
5
E.: Biologically inspired mobile robot control robust to hardware failures and sensor noise. In: Robocup 2010
, 2010
"... Abstract. Some bacteria present a movement which can be modeled as a biased random walk. Biased random walk can be used also for artificial creatures as a very simple and robust control policy for tasks like goal reaching. In this paper, we show how a very simple control law based on random walk is ..."
Abstract
-
Cited by 1 (1 self)
- Add to MetaCart
(Show Context)
Abstract. Some bacteria present a movement which can be modeled as a biased random walk. Biased random walk can be used also for artificial creatures as a very simple and robust control policy for tasks like goal reaching. In this paper, we show how a very simple control law based on random walk is able to guide mobile robot equipped with an om-nidirectional camera toward a target without any knowledge about the robot’s actuators or about the robot’s camera parameters. We verified, by several simulation experiments, the robustness of the random biased control law with respect to failures of robot’s actuators or sensor dam-ages. These damages are similar to the ones which can occur during a RoboCup match. The tests show that the optimal behavior is obtained using a bias which is roughly proportional to the random walk step, with a coefficient dependent on the physical structure of the robot, on its ac-tuators and on and its sensors after the damage. Finally, we validated the proposed approach with experiments in the real world with a wheeled robot performing a goal reaching task in a Middle-Size RoboCup field without any prior knowledge on the actuators and without any calibra-tion of the very noisy omnidirectional camera mounted on the robot. 1
unknown title
"... Abstract This paper studies a fault tolerant control strategy for a four wheel skid steering mobile robot (SSMR). Through this work the fault diagnosis procedure is accomplished using structural analysis technique while fault accommodation is based on a Recursive Least Squares (RLS) approximation. ..."
Abstract
- Add to MetaCart
(Show Context)
Abstract This paper studies a fault tolerant control strategy for a four wheel skid steering mobile robot (SSMR). Through this work the fault diagnosis procedure is accomplished using structural analysis technique while fault accommodation is based on a Recursive Least Squares (RLS) approximation. The goal is to detect faults as early as possible and recalculate command inputs in order to achieve fault tolerance, which means that despites the faults occurrences the system is able to recover its original task with the same or degraded performance. Fault tolerance can be considered that it is constituted by two basic tasks, fault diagnosis and control redesign. In our research using the diagnosis approach presented in our previous work we addressed mainly to the second task proposing a framework for fault tolerant control, which allows retaining acceptable performance under systems faults. In order to prove the efficacy of the proposed method, an experimental procedure was carried out using a Pioneer 3-AT mobile robot.
Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments. ” I have
, 2008
"... for form and content and recommend that it be ..."