Results 1  10
of
195
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 423 (37 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
Sparse representation for color image restoration
 the IEEE Trans. on Image Processing
, 2007
"... Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted ..."
Abstract

Cited by 214 (30 self)
 Add to MetaCart
(Show Context)
Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted dictionaries for images has been a major challenge. The KSVD has been recently proposed for this task [1], and shown to perform very well for various grayscale image processing tasks. In this paper we address the problem of learning dictionaries for color images and extend the KSVDbased grayscale image denoising algorithm that appears in [2]. This work puts forward ways for handling nonhomogeneous noise and missing information, paving the way to stateoftheart results in applications such as color image denoising, demosaicing, and inpainting, as demonstrated in this paper. EDICS Category: COLCOLR (Color processing) I.
Fast Discrete Curvelet Transforms
, 2005
"... This paper describes two digital implementations of a new mathematical transform, namely, the second generation curvelet transform [12, 10] in two and three dimensions. The first digital transformation is based on unequallyspaced fast Fourier transforms (USFFT) while the second is based on the wrap ..."
Abstract

Cited by 170 (9 self)
 Add to MetaCart
(Show Context)
This paper describes two digital implementations of a new mathematical transform, namely, the second generation curvelet transform [12, 10] in two and three dimensions. The first digital transformation is based on unequallyspaced fast Fourier transforms (USFFT) while the second is based on the wrapping of specially selected Fourier samples. The two implementations essentially differ by the choice of spatial grid used to translate curvelets at each scale and angle. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. And both implementations are fast in the sense that they run in O(n 2 log n) flops for n by n Cartesian arrays; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity. Our digital transformations improve upon earlier implementations—based upon the first generation of curvelets—in the sense that they are conceptually simpler, faster and far less redundant. The software CurveLab, which implements both transforms presented in this paper, is available at
Optimal spatial adaptation for patchbased image denoising
 IEEE Trans. Image Process
, 2006
"... Abstract—A novel adaptive and patchbased approach is proposed for image denoising and representation. The method is based on a pointwise selection of small image patches of fixed size in the variable neighborhood of each pixel. Our contribution is to associate with each pixel the weighted sum of da ..."
Abstract

Cited by 114 (10 self)
 Add to MetaCart
Abstract—A novel adaptive and patchbased approach is proposed for image denoising and representation. The method is based on a pointwise selection of small image patches of fixed size in the variable neighborhood of each pixel. Our contribution is to associate with each pixel the weighted sum of data points within an adaptive neighborhood, in a manner that it balances the accuracy of approximation and the stochastic error, at each spatial position. This method is general and can be applied under the assumption that there exists repetitive patterns in a local neighborhood of a point. By introducing spatial adaptivity, we extend the work earlier described by Buades et al. which can be considered as an extension of bilateral filtering to image patches. Finally, we propose a nearly parameterfree algorithm for image denoising. The method is applied to both artificially corrupted (white Gaussian noise) and real images and the performance is very close to, and in some cases even surpasses, that of the already published denoising methods. I.
Dictionaries for Sparse Representation Modeling
"... Sparse and redundant representation modeling of data assumes an ability to describe signals as linear combinations of a few atoms from a prespecified dictionary. As such, the choice of the dictionary that sparsifies the signals is crucial for the success of this model. In general, the choice of a p ..."
Abstract

Cited by 108 (3 self)
 Add to MetaCart
Sparse and redundant representation modeling of data assumes an ability to describe signals as linear combinations of a few atoms from a prespecified dictionary. As such, the choice of the dictionary that sparsifies the signals is crucial for the success of this model. In general, the choice of a proper dictionary can be done using one of two ways: (i) building a sparsifying dictionary based on a mathematical model of the data, or (ii) learning a dictionary to perform best on a training set. In this paper we describe the evolution of these two paradigms. As manifestations of the first approach, we cover topics such as wavelets, wavelet packets, contourlets, and curvelets, all aiming to exploit 1D and 2D mathematical models for constructing effective dictionaries for signals and images. Dictionary learning takes a different route, attaching the dictionary to a set of examples it is supposed to serve. From the seminal work of Field and Olshausen, through the MOD, the KSVD, the Generalized PCA and others, this paper surveys the various options such training has to offer, up to the most recent contributions and structures.
NONSUBSAMPLED CONTOURLET TRANSFORM: FILTER DESIGN AND APPLICATIONS IN DENOISING
"... In this paper we study the nonsubsampled contourlet transform. We address the corresponding filter design problem using the McClellan transformation. We show how zeroes can be imposed in the filters so that the iterated structure produces regular basis functions. The proposed design framework yields ..."
Abstract

Cited by 105 (4 self)
 Add to MetaCart
(Show Context)
In this paper we study the nonsubsampled contourlet transform. We address the corresponding filter design problem using the McClellan transformation. We show how zeroes can be imposed in the filters so that the iterated structure produces regular basis functions. The proposed design framework yields filters that can be implemented efficiently through a lifting factorization. We apply the constructed transform in image noise removal where the results obtained are comparable to the stateofthe art, being superior in some cases.
OPTIMALLY SPARSE MULTIDIMENSIONAL REPRESENTATION USING SHEARLETS
"... Abstract. In this paper we show that the shearlets, an affinelike system of functions recently introduced by the authors and their collaborators, are essentially optimal in representing 2–dimensional functions f that are C2 except for discontinuities along C2 curves. More specifically, if f S N is ..."
Abstract

Cited by 103 (29 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we show that the shearlets, an affinelike system of functions recently introduced by the authors and their collaborators, are essentially optimal in representing 2–dimensional functions f that are C2 except for discontinuities along C2 curves. More specifically, if f S N is the N–term reconstruction of f obtained by using the N largest coefficients in the shearlet representation, then the asymptotic approximation error decays as ‖f − f S N ‖2 2 ≃ N −2 (log N) 3, N → ∞, which is essentially optimal, and greatly outperforms the corresponding asymptotic approximation rate N −1 associated with wavelet approximations. Unlike the curvelets, that have similar sparsity properties, the shearlets form an affinelike system and have a simpler mathematical structure. In fact, the elements of this system form a Parseval frame and are generated by applying dilations, shear transformations and translations to a single welllocalized window function.
Learning multiscale sparse representations for image and video restoration
, 2007
"... Abstract. This paper presents a framework for learning multiscale sparse representations of color images and video with overcomplete dictionaries. A singlescale KSVD algorithm was introduced in [1], formulating sparse dictionary learning for grayscale image representation as an optimization proble ..."
Abstract

Cited by 103 (21 self)
 Add to MetaCart
(Show Context)
Abstract. This paper presents a framework for learning multiscale sparse representations of color images and video with overcomplete dictionaries. A singlescale KSVD algorithm was introduced in [1], formulating sparse dictionary learning for grayscale image representation as an optimization problem, efficiently solved via Orthogonal Matching Pursuit (OMP) and Singular Value Decomposition (SVD). Following this work, we propose a multiscale learned representation, obtained by using an efficient quadtree decomposition of the learned dictionary, and overlapping image patches. The proposed framework provides an alternative to predefined dictionaries such as wavelets, and shown to lead to stateoftheart results in a number of image and video enhancement and restoration applications. This paper describes the proposed framework, and accompanies it by numerous examples demonstrating its strength. Key words. Image and video processing, sparsity, dictionary, multiscale representation, denoising, inpainting, interpolation, learning. AMS subject classifications. 49M27, 62H35
Sparse Directional Image Representations using the Discrete Shearlet Transform
 Appl. Comput. Harmon. Anal
"... It is now widely acknowledged that traditional wavelets are not very effective in dealing with multidimensional signals containing distributed discontinuities. To achieve a more efficient representation one has to use basis elements with much higher directional sensitivity. This paper introduces a n ..."
Abstract

Cited by 85 (44 self)
 Add to MetaCart
(Show Context)
It is now widely acknowledged that traditional wavelets are not very effective in dealing with multidimensional signals containing distributed discontinuities. To achieve a more efficient representation one has to use basis elements with much higher directional sensitivity. This paper introduces a new discrete multiscale directional representation called the Discrete Shearlet Transform. This approach, which is based on the shearlet transform, combines the power of multiscale methods with a unique ability to capture the geometry of multidimensional data and is optimally efficient in representing images containing edges. We describe two different methods of implementing the shearlet transform. The numerical experiments presented in this paper demonstrate that the Discrete Shearlet Transform is very competitive in denoising applications both in terms of performance and computational efficiency.
Image denoising via learned dictionaries and sparse representation
 In CVPR
, 2006
"... We address the image denoising problem, where zeromean white and homogeneous Gaussian additive noise should be removed from a given image. The approach taken is based on sparse and redundant representations over a trained dictionary. The proposed algorithm denoises the image, while simultaneously tr ..."
Abstract

Cited by 70 (7 self)
 Add to MetaCart
(Show Context)
We address the image denoising problem, where zeromean white and homogeneous Gaussian additive noise should be removed from a given image. The approach taken is based on sparse and redundant representations over a trained dictionary. The proposed algorithm denoises the image, while simultaneously trainining a dictionary on its (corrupted) content using the KSVD algorithm. As the dictionary training algorithm is limited in handling small image patches, we extend its deployment to arbitrary image sizes by defining a global image prior that forces sparsity over patches in every location in the image. We show how such Bayesian treatment leads to a simple and effective denoising algorithm, with stateoftheart performance, equivalent and sometimes surpassing recently published leading alternative denoising methods. 1.