Results 1 - 10
of
175
Measuring ISP Topologies with Rocketfuel
- In Proc. ACM SIGCOMM
, 2002
"... To date, realistic ISP topologies have not been accessible to the research community, leaving work that depends on topology on an uncertain footing. In this paper, we present new Internet mapping techniques that have enabled us to directly measure router-level ISP topologies. Our techniques reduce t ..."
Abstract
-
Cited by 843 (28 self)
- Add to MetaCart
To date, realistic ISP topologies have not been accessible to the research community, leaving work that depends on topology on an uncertain footing. In this paper, we present new Internet mapping techniques that have enabled us to directly measure router-level ISP topologies. Our techniques reduce the number of required traces compared to a brute-force, all-to-all approach by three orders of magnitude without a significant loss in accuracy. They include the use of BGP routing tables to focus the measurements, exploiting properties of IP routing to eliminate redundant measurements, better alias resolution, and the use of DNS to divide each map into POPs and backbone. We collect maps from ten diverse ISPs using our techniques, and find that our maps are substantially more complete than those of earlier Internet mapping efforts. We also report on properties of these maps, including the size of POPs, distribution of router outdegree, and the inter-domain peering structure. As part of this work, we release our maps to the community.
Bullet: High Bandwidth Data Dissemination Using an Overlay Mesh
, 2003
"... In recent years, overlay networks have become an effective alternative to IP multicast for efficient point to multipoint communication across the Internet. Typically, nodes self-organize with the goal of forming an efficient overlay tree, one that meets performance targets without placing undue burd ..."
Abstract
-
Cited by 424 (22 self)
- Add to MetaCart
In recent years, overlay networks have become an effective alternative to IP multicast for efficient point to multipoint communication across the Internet. Typically, nodes self-organize with the goal of forming an efficient overlay tree, one that meets performance targets without placing undue burden on the underlying network. In this paper, we target high-bandwidth data distribution from a single source to a large number of receivers. Applications include large-file transfers and real-time multimedia streaming. For these applications, we argue that an overlay mesh, rather than a tree, can deliver fundamentally higher bandwidth and reliability relative to typical tree structures. This paper presents Bullet, a scalable and distributed algorithm that enables nodes spread across the Internet to self-organize into a high bandwidth overlay mesh. We construct Bullet around the insight that data should be distributed in a disjoint manner to strategic points in the network. Individual Bullet receivers are then responsible for locating and retrieving the data from multiple points in parallel. Key contributions of this work include: i) an algorithm that sends data to di#erent points in the overlay such that any data object is equally likely to appear at any node, ii) a scalable and decentralized algorithm that allows nodes to locate and recover missing data items, and iii) a complete implementation and evaluation of Bullet running across the Internet and in a large-scale emulation environment reveals up to a factor two bandwidth improvements under a variety of circumstances. In addition, we find that, relative to tree-based solutions, Bullet reduces the need to perform expensive bandwidth probing.
Scalability and Accuracy in a Large-Scale Network Emulator
- IN PROCEEDINGS OF THE 5TH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDI
, 2002
"... This paper presents ModelNet, a scalable Internet emulation environment that enables researchers to deploy unmodified software prototypes in a configurable Internet-like environment and subject them to faults and varying network conditions. Edge nodes running user-specified OS and application softwa ..."
Abstract
-
Cited by 296 (45 self)
- Add to MetaCart
(Show Context)
This paper presents ModelNet, a scalable Internet emulation environment that enables researchers to deploy unmodified software prototypes in a configurable Internet-like environment and subject them to faults and varying network conditions. Edge nodes running user-specified OS and application software are configured to route their packets through a set of ModelNet core nodes, which cooperate to subject the traffic to the bandwidth, congestion constraints, latency, and loss profile of a target network topology.
This paper describes and evaluates the ModelNet architecture and its implementation, including novel techniques to balance emulation accuracy against scalability. The current ModelNet prototype is able to accurately subject thousands of instances of a distributed application to Internet-like conditions with gigabits of bisection bandwidth. Experiments with several large-scale distributed services demonstrate the generality and effectiveness of the infrastructure.
On Distinguishing between Internet Power Law Topology Generators
, 2002
"... Recent work has shown that the node degree in the WWW induced graph and the AS-level Internet topology exhibit power laws. Since then several algorithms have been proposed to generate such power law graphs. In this paper we evaluate the effectiveness of these generators to generate representative AS ..."
Abstract
-
Cited by 256 (4 self)
- Add to MetaCart
Recent work has shown that the node degree in the WWW induced graph and the AS-level Internet topology exhibit power laws. Since then several algorithms have been proposed to generate such power law graphs. In this paper we evaluate the effectiveness of these generators to generate representative AS-level topologies. Our conclusions are mixed. Although they (mostly) do a reasonable job at capturing the power law exponent, they do less well in capturing the clustering phenomena exhibited by the Internet topology. Based on these results we propose a variation of the recent incremental topology generator of [6] that is more successful at matching the power law exponent and the clustering behavior of the Internet. Last, we comment on the small world behavior of the Internet topology.
A First-Principles Approach to Understanding the Internet's Router-level Topology
, 2004
"... A detailed understanding of the many facets of the Internet's topological structure is critical for evaluating the performance of networking protocols, for assessing the effectiveness of proposed techniques to protect the network from nefarious intrusions and attacks, or for developing improved ..."
Abstract
-
Cited by 213 (19 self)
- Add to MetaCart
(Show Context)
A detailed understanding of the many facets of the Internet's topological structure is critical for evaluating the performance of networking protocols, for assessing the effectiveness of proposed techniques to protect the network from nefarious intrusions and attacks, or for developing improved designs for resource provisioning. Previous studies of topology have focused on interpreting measurements or on phenomenological descriptions and evaluation of graph-theoretic properties of topology generators. We propose a complementary approach of combining a more subtle use of statistics and graph theory with a first-principles theory of router-level topology that reflects practical constraints and tradeoffs. While there is an inevitable tradeoff between model complexity and fidelity, a challenge is to distill from the seemingly endless list of potentially relevant technological and economic issues the features that are most essential to a solid understanding of the intrinsic fundamentals of network topology. We claim that very simple models that incorporate hard technological constraints on router and link bandwidth and connectivity, together with abstract models of user demand and network performance, can successfully address this challenge and further resolve much of the confusion and controversy that has surrounded topology generation and evaluation.
DIMES: Let the Internet measure itself
- Computer Communication Review
, 2005
"... Abstract — Today’s Internet maps, which are all collected from a small number of vantage points, are falling short of being accurate. We suggest here a paradigm shift for this task. DIMES is a distributed measurement infrastructure for the Internet that is based on the deployment of thousands of lig ..."
Abstract
-
Cited by 207 (33 self)
- Add to MetaCart
(Show Context)
Abstract — Today’s Internet maps, which are all collected from a small number of vantage points, are falling short of being accurate. We suggest here a paradigm shift for this task. DIMES is a distributed measurement infrastructure for the Internet that is based on the deployment of thousands of light weight measurement agents around the globe. We describe the rationale behind DIMES deployment, discuss its design trade-offs and algorithmic challenges, and analyze the structure of the Internet as it seen with DIMES. I.
Towards a theory of scale-free graphs: Definition, properties, and implications
- Internet Mathematics
, 2005
"... Abstract. There is a large, popular, and growing literature on “scale-free ” networks with the Internet along with metabolic networks representing perhaps the canonical examples. While this has in many ways reinvigorated graph theory, there is unfortunately no consistent, precise definition of scale ..."
Abstract
-
Cited by 137 (12 self)
- Add to MetaCart
Abstract. There is a large, popular, and growing literature on “scale-free ” networks with the Internet along with metabolic networks representing perhaps the canonical examples. While this has in many ways reinvigorated graph theory, there is unfortunately no consistent, precise definition of scale-free graphs and few rigorous proofs of many of their claimed properties. In fact, it is easily shown that the existing theory has many inherent contradictions and that the most celebrated claims regarding the Internet and biology are verifiably false. In this paper, we introduce a structural metric that allows us to differentiate between all simple, connected graphs having an identical degree sequence, which is of particular interest when that sequence satisfies a power law relationship. We demonstrate that the proposed structural metric yields considerable insight into the claimed properties of SF graphs and provides one possible measure of the extent to which a graph is scale-free. This structural view can be related to previously studied graph properties such as the various notions of self-similarity, likelihood, betweenness and assortativity. Our approach clarifies much of the confusion surrounding the sensational qualitative claims in the current literature, and offers a rigorous and quantitative alternative, while suggesting the potential for a rich and interesting theory. This paper is aimed at readers familiar with the basics of Internet technology and comfortable with a theorem-proof style of exposition, but who may be unfamiliar with the existing literature on scale-free networks. 1.
The Origin of Power Laws in Internet Topologies Revisited
- In IEEE INFOCOM 2002
, 2002
"... In a recent paper, Faloutsos et al. [1] found that the inter Autonomous System (AS) topology exhibits a power-law vertex degree distribution. This result was quite unexpected in the networking community and stirred significant interest in exploring the possible causes of this phenomenon. The work of ..."
Abstract
-
Cited by 109 (3 self)
- Add to MetaCart
(Show Context)
In a recent paper, Faloutsos et al. [1] found that the inter Autonomous System (AS) topology exhibits a power-law vertex degree distribution. This result was quite unexpected in the networking community and stirred significant interest in exploring the possible causes of this phenomenon. The work of Barabasi and Albert [2] and its application to network topology generation in the work of Medina et al. [3] have explored a promising class of models that yield strict power-law vertex degree distributions. In this paper, we re-examine the BGP measurements that form the basis for the results reported in [1]. We find that by their very nature (i.e., being strictly BGP-based), the data provides a very incomplete picture of Internet connectivity at the AS level. The AS connectivity maps constructed from this data (the original maps) typically miss 20--50% or even more of the physical links in AS maps constructed using additional sources (the extended maps). Subsequently, we find that while the vertex degree distributions resulting from the extended maps are heavy-tailed, they deviate significantly from a strict power law. Finally, we show that available historical data does not support the connectivity-based dynamics assumed in [2]. Together, our results suggest that the Internet topology at the AS level may well have developed over time following a very different set of growth processes than those proposed in [2].
The Internet AS-Level Topology: Three Data Sources and One Definitive Metric
"... We calculate an extensive set of characteristics for Internet AS topologies extracted from the three data sources most frequently used by the research community: traceroutes, BGP, and WHOIS. We discover that traceroute and BGP topologies are similar to one another but differ substantially from the W ..."
Abstract
-
Cited by 108 (15 self)
- Add to MetaCart
We calculate an extensive set of characteristics for Internet AS topologies extracted from the three data sources most frequently used by the research community: traceroutes, BGP, and WHOIS. We discover that traceroute and BGP topologies are similar to one another but differ substantially from the WHOIS topology. Among the widely considered metrics, we find that the joint degree distribution appears to fundamentally characterize Internet AS topologies as well as narrowly define values for other important metrics. We discuss the interplay between the specifics of the three data collection mechanisms and the resulting topology views. In particular, we show how the data collection peculiarities explain differences in the resulting joint degree distributions of the respective topologies. Finally, we release to the community the input topology datasets, along with the scripts and output of our calculations. This supplement should enable researchers to validate their models against real data and to make more informed selection of topology data sources for their specific needs.
Collecting the Internet AS-level Topology
- ACM SIGCOMM Computer Communications Review (CCR
, 2005
"... At the inter-domain level, the Internet topology can be represented by a graph with Autonomous Systems (ASes) as nodes and AS peerings as links. This AS-level topology graph has been widely used in a variety of research efforts. Conventionally this topology graph is derived from routing tables colle ..."
Abstract
-
Cited by 107 (12 self)
- Add to MetaCart
(Show Context)
At the inter-domain level, the Internet topology can be represented by a graph with Autonomous Systems (ASes) as nodes and AS peerings as links. This AS-level topology graph has been widely used in a variety of research efforts. Conventionally this topology graph is derived from routing tables collected by RouteViews or RIPE RIS. In this work, we assemble the most complete AS-level topology by extending the conventional method along two dimensions. First, in addition to using data from RouteViews and RIPE RIS, we also collect data from many other sources, including route servers, looking glasses, and routing registries. Second, in addition to using routing tables, we also accumulate topological information from routing updates over time. The resulting topology graph on a recent day contains 44 % more links and 3 % more nodes than that from using RouteViews routing tables alone. Our data collection and topology generation process have been automated, and we publish the latest topology on the web on a daily basis. 1.