Results 1 - 10
of
36
Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study
, 2011
"... Aberrant topological properties of small-world human brain networks in patients with schizophrenia (SZ) have been documented in previous neuroimaging studies. Aberrant functional network connectivity (FNC, temporal relationships among independent component time courses) has also been found in SZ by ..."
Abstract
-
Cited by 10 (3 self)
- Add to MetaCart
(Show Context)
Aberrant topological properties of small-world human brain networks in patients with schizophrenia (SZ) have been documented in previous neuroimaging studies. Aberrant functional network connectivity (FNC, temporal relationships among independent component time courses) has also been found in SZ by a previous resting state functional magnetic resonance imaging (fMRI) study. However, no study has yet determined if topological properties of FNC are also altered in SZ. In this study, small-world network metrics of FNC during the resting state were examined in both healthy controls (HCs) and SZ subjects. FMRI data were obtained from 19 HCs and 19 SZ. Brain images were decomposed into independent components (ICs) by group independent component analysis (ICA). FNC maps were constructed via a partial correlation analysis of ICA time courses. A set of undirected graphs were built by thresholding the FNC maps and the small-world network metrics of these maps were evaluated. Our results demonstrated significantly altered topological properties of FNC in SZ relative to controls. In addition, topological measures of many ICs involving frontal, parietal, occipital and cerebellar areas were altered in SZ relative to controls. Specifically, topological measures of whole network and specific components in SZ were correlated with scores on the negative symptom scale of the Positive and Negative Symptom Scale (PANSS). These findings suggest that aberrant architecture of small-world brain topology in SZ consists of ICA temporally coherent brain
L: Altered regional homogeneity in pediatric bipolar disorder during manic state: a resting-state fMRI study. PLoS One 2013
"... Pediatric bipolar disorder (PBD) is a severely debilitating illness, which is characterized by episodes of mania and depression separated by periods of remission. Previous fMRI studies investigating PBD were mainly task-related. However, little is known about the abnormalities in PBD, especially dur ..."
Abstract
-
Cited by 4 (2 self)
- Add to MetaCart
(Show Context)
Pediatric bipolar disorder (PBD) is a severely debilitating illness, which is characterized by episodes of mania and depression separated by periods of remission. Previous fMRI studies investigating PBD were mainly task-related. However, little is known about the abnormalities in PBD, especially during resting state. Resting state brain activity measured by fMRI might help to explore neurobiological biomarkers of the disorder. Methods: Regional homogeneity (ReHo) was examined with resting-state fMRI (RS-fMRI) on 15 patients with PBD in manic state, with 15 age-and sex-matched healthy youth subjects as controls. Results: Compared with the healthy controls, the patients with PBD showed altered ReHo in the cortical and subcortical structures. The ReHo measurement of the PBD group was negatively correlated with the score of Young Mania Rating Scale (YMRS) in the superior frontal gyrus. Positive correlations between the ReHo measurement and the score of YMRS were found in the hippocampus and the anterior cingulate cortex in the PBD group. Conclusions: Altered regional brain activity is present in patients with PBD during manic state. This study presents new evidence for abnormal ventral-affective and dorsal-cognitive circuits in PBD during resting state and may add fresh insights into the pathophysiological mechanisms underlying PBD.
Remote effects of hippocampal sclerosis on effective connectivity during working memory encoding: a case of connectional diaschisis? Cereb
- Cortex
, 2012
"... Accumulating evidence suggests a role for the medial temporal lobe (MTL) in working memory (WM). However, little is known concerning its functional interactions with other cortical regions in the distributed neural network subserving WM. To reveal these, we availed of subjects with MTL damage and ch ..."
Abstract
-
Cited by 3 (1 self)
- Add to MetaCart
(Show Context)
Accumulating evidence suggests a role for the medial temporal lobe (MTL) in working memory (WM). However, little is known concerning its functional interactions with other cortical regions in the distributed neural network subserving WM. To reveal these, we availed of subjects with MTL damage and characterized changes in effective connectivity while subjects engaged in WM task. Specifically, we compared dynamic causal models, extracted from magnetoencephalographic recordings during verbal WM encoding, in temporal lobe epilepsy patients (with left hippocampal sclerosis) and controls. Bayesian model comparison indicated that the best model (across subjects) evidenced bilateral, forward, and backward connections, coupling inferior temporal cortex (ITC), inferior frontal cortex (IFC), and MTL. MTL damage weakened backward connections from left MTL to left ITC, a decrease accompanied by strengthening of (bidirectional) connections
Topological fractionation of resting-state networks
- Hum. Brain Mapp
, 2011
"... Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Largescale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state net ..."
Abstract
-
Cited by 3 (1 self)
- Add to MetaCart
(Show Context)
Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Largescale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing. However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research,
A study of brain networks associated with swallowing using graph-theoretical approaches
- PloS one
, 2013
"... Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI) was utilized to study brain ..."
Abstract
-
Cited by 3 (0 self)
- Add to MetaCart
(Show Context)
Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI) was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, 23:1+1:52 years of age). To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a
Multiscale Causal Connectivity Analysis by Canonical Correlation: Theory and Application to Epileptic Brain
"... Abstract—Multivariate Granger causality is a well-established approach for inferring information flow in complex systems, and it is being increasingly applied to map brain connectivity. Tradi-tional Granger causality is based on vector autoregressive (AR) or mixed autoregressive moving average (ARMA ..."
Abstract
-
Cited by 1 (1 self)
- Add to MetaCart
(Show Context)
Abstract—Multivariate Granger causality is a well-established approach for inferring information flow in complex systems, and it is being increasingly applied to map brain connectivity. Tradi-tional Granger causality is based on vector autoregressive (AR) or mixed autoregressive moving average (ARMA) model, which are potentially affected by errors in parameter estimation and may be contaminated by zero-lag correlation, notably when modeling neuroimaging data. To overcome this issue, we present here an extended canonical correlation approach to measure multivariate Granger causal interactions among time series. The procedure in-cludes a reduced rank step for calculating canonical correlation analysis (CCA), and extends the definition of causality including instantaneous effects, thus avoiding the potential estimation prob-lems of AR (or ARMA) models. We tested this approach on sim-ulated data and confirmed its practical utility by exploring local network connectivity at different scales in the epileptic brain ana-lyzing scalp and depth-EEG data during an interictal period. Index Terms—Canonical correlation analysis, depth-EEG, mul-tivariate Granger causality. I.
Disrupted causal connectivity in mesial temporal lobe epilepsy
- PloS one 8: e63183. Functional Connectivity Predicts Surgical Outcome PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e77916
, 2013
"... Although mesial temporal lobe epilepsy (mTLE) is characterized by the pathological changes in mesial temporal lobe, function alteration was also found in extratemporal regions. Our aim is to investigate the information flow between the epileptogenic zone (EZ) and other brain regions. Resting-state f ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
(Show Context)
Although mesial temporal lobe epilepsy (mTLE) is characterized by the pathological changes in mesial temporal lobe, function alteration was also found in extratemporal regions. Our aim is to investigate the information flow between the epileptogenic zone (EZ) and other brain regions. Resting-state functional magnetic resonance imaging (RS-fMRI) data were recorded from 23 patients with left mTLE and matched controls. We first identified the potential EZ using the amplitude of low-frequency fluctuation (ALFF) of RS-fMRI signal, then performed voxel-wise Granger causality analysis between EZ and the whole brain. Relative to controls, patients demonstrated decreased driving effect from EZ to thalamus and basal ganglia, and increased feedback. Additionally, we found an altered causal relation between EZ and cortical networks (default mode network, limbic system, visual network and executive control network). The influence from EZ to right precuneus and brainstem negatively correlated with disease duration, whereas that from the right hippocampus, fusiform cortex, and lentiform nucleus to EZ showed positive correlation. These findings demonstrate widespread brain regions showing abnormal functional interaction with EZ. In addition, increased ALFF in EZ was positively correlated with the increased driving effect on EZ in patients, but not in controls. This finding suggests that the initiation of epileptic activity depends not only on EZ itself, but also on the activity emerging in large-scale macroscopic brain networks. Overall, this study suggests that the causal topological organization is disrupted in mTLE, providing valuable information to understand the
Impairments of thalamic nuclei in idiopathic generalized epilepsy revealed by a study combining morphological and functional connectivity MRI. PloS One 7(7): e39701
, 2012
"... Objective: Neuroimaging evidence suggested that the thalamic nuclei may play different roles in the progress of idiopathic generalized epilepsy (IGE). This study aimed to demonstrate the alterations in morphometry and functional connectivity in the thalamic nuclei in IGE. Methods: Fifty-two patients ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
(Show Context)
Objective: Neuroimaging evidence suggested that the thalamic nuclei may play different roles in the progress of idiopathic generalized epilepsy (IGE). This study aimed to demonstrate the alterations in morphometry and functional connectivity in the thalamic nuclei in IGE. Methods: Fifty-two patients with IGE characterized by generalized tonic-clonic seizures and 67 healthy controls were involved in the study. The three-dimensional high-resolution T1-weighted MRI data were acquired for voxel-based morphometry (VBM) analysis, and resting-state blood-oxygenation level functional MRI data were acquired for functional connectivity analysis. The thalamic nuclei of bilateral medial dorsal nucleus (MDN) and pulvinar, as detected with decreased gray matter volumes in patients with IGE through VBM analysis, were selected as seed regions for functional connectivity analysis. Results: Different alteration patterns were found in functional connectivity of the thalamic nuclei with decreased gray matter volumes in IGE. Seeding at the MDN, decreased connectivity in the bilateral orbital frontal cortex, caudate nucleus, putamen and amygdala were found in the patients (P,0.05 with correction). However, seeding at the pulvinar, no significant alteration of functional connectivity was found in the patients (P,0.05 with correction). Conclusions: Some specific impairment of thalamic nuclei in IGE was identified using morphological and functional
Time-shift homotopic connectivity in mesial temporal lobe epilepsy
, 2014
"... ABSTRACT BACKGROUND AND PURPOSE: Voxel-mirrored intrinsic functional connectivity allows the depiction of interhemispheric homotopic connections in the human brain, whereas time-shift intrinsic functional connectivity allows the detection of the extent of brain injury by measuring hemodynamic prope ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
ABSTRACT BACKGROUND AND PURPOSE: Voxel-mirrored intrinsic functional connectivity allows the depiction of interhemispheric homotopic connections in the human brain, whereas time-shift intrinsic functional connectivity allows the detection of the extent of brain injury by measuring hemodynamic properties. We combined time-shift voxel-mirrored homotopic connectivity analyses to investigate the alterations in homotopic connectivity in mesial temporal lobe epilepsy and assessed the value of applying this approach to epilepsy lateralization and the prediction of surgical outcomes in mesial temporal lobe epilepsy.
MEG network differences between low- and high-grade glioma related to epilepsy and cognition
- PLOS ONE
, 2012
"... Objective: To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG) and high-grade glioma (HGG) patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL) and healthy ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
(Show Context)
Objective: To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG) and high-grade glioma (HGG) patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL) and healthy controls. Finally, we related network characteristics to seizure frequency and cognitive performance within patient groups. Methods: We constructed functional networks from pre-surgical resting-state magnetoencephalography (MEG) recordings of 13 LGG patients, 12 HGG patients, 10 NGL patients, and 36 healthy controls. Normalized clustering coefficient and average shortest path length as well as modular structure and network synchronizability were computed for each group. Cognitive performance was assessed in a subset of 11 LGG and 10 HGG patients. Results: LGG patients showed decreased network synchronizability and decreased global integration compared to healthy controls in the theta frequency range (4–8 Hz), similar to NGL patients. HGG patients ’ networks did not significantly differ from those in controls. Network characteristics correlated with clinical presentation regarding seizure frequency in LGG patients, and with poorer cognitive performance in both LGG and HGG glioma patients. Conclusion: Lesion histology partly determines differences in functional networks in glioma patients suffering from epilepsy. We suggest that differences between LGG and HGG patients ’ networks are explained by differences in plasticity,