Results 1  10
of
405
A New VoronoiBased Surface Reconstruction Algorithm
, 2002
"... We describe our experience with a new algorithm for the reconstruction of surfaces from unorganized sample points in R³. The algorithm is the first for this problem with provable guarantees. Given a “good sample” from a smooth surface, the output is guaranteed to be topologically correct and converg ..."
Abstract

Cited by 414 (9 self)
 Add to MetaCart
We describe our experience with a new algorithm for the reconstruction of surfaces from unorganized sample points in R³. The algorithm is the first for this problem with provable guarantees. Given a “good sample” from a smooth surface, the output is guaranteed to be topologically correct and convergent to the original surface as the sampling density increases. The definition of a good sample is itself interesting: the required sampling density varies locally, rigorously capturing the intuitive notion that featureless areas can be reconstructed from fewer samples. The output mesh interpolates, rather than approximates, the input points. Our algorithm is based on the threedimensional Voronoi diagram. Given a good program for this fundamental subroutine, the algorithm is quite easy to implement.
The ballpivoting algorithm for surface reconstruction.
 IEEE TRansactions on Visualization and Computer Graphics,
, 1999
"... ..."
(Show Context)
The Power Crust
, 2001
"... The power crust is a construction which takes a sample of points from the surface of a threedimensional object and produces a surface mesh and an approximate medial axis. The approach is to first approximate the medial axis transform (MAT) of the object. We then use an inverse transform to produce ..."
Abstract

Cited by 259 (7 self)
 Add to MetaCart
The power crust is a construction which takes a sample of points from the surface of a threedimensional object and produces a surface mesh and an approximate medial axis. The approach is to first approximate the medial axis transform (MAT) of the object. We then use an inverse transform to produce the surface representation from the MAT.
Stability of Persistence Diagrams
, 2005
"... The persistence diagram of a realvalued function on a topological space is a multiset of points in the extended plane. We prove that under mild assumptions on the function, the persistence diagram is stable: small changes in the function imply only small changes in the diagram. We apply this result ..."
Abstract

Cited by 222 (23 self)
 Add to MetaCart
The persistence diagram of a realvalued function on a topological space is a multiset of points in the extended plane. We prove that under mild assumptions on the function, the persistence diagram is stable: small changes in the function imply only small changes in the diagram. We apply this result to estimating the homology of sets in a metric space and to comparing and classifying geometric shapes.
Finding the homology of submanifolds with high confidence from random samples
, 2004
"... Recently there has been a lot of interest in geometrically motivated approaches to data analysis in high dimensional spaces. We consider the case where data is drawn from sampling a probability distribution that has support on or near a submanifold of Euclidean space. We show how to “learn ” the hom ..."
Abstract

Cited by 177 (6 self)
 Add to MetaCart
(Show Context)
Recently there has been a lot of interest in geometrically motivated approaches to data analysis in high dimensional spaces. We consider the case where data is drawn from sampling a probability distribution that has support on or near a submanifold of Euclidean space. We show how to “learn ” the homology of the submanifold with high confidence. We discuss an algorithm to do this and provide learningtheoretic complexity bounds. Our bounds are obtained in terms of a condition number that limits the curvature and nearness to selfintersection of the submanifold. We are also able to treat the situation where the data is “noisy ” and lies near rather than on the submanifold in question.
Partial and approximate symmetry detection for 3D geometry
 ACM TRANSACTIONS ON GRAPHICS
, 2006
"... “Symmetry is a complexityreducing concept [...]; seek it everywhere.” Alan J. Perlis Many natural and manmade objects exhibit significant symmetries or contain repeated substructures. This paper presents a new algorithm that processes geometric models and efficiently discovers and extracts a com ..."
Abstract

Cited by 176 (26 self)
 Add to MetaCart
“Symmetry is a complexityreducing concept [...]; seek it everywhere.” Alan J. Perlis Many natural and manmade objects exhibit significant symmetries or contain repeated substructures. This paper presents a new algorithm that processes geometric models and efficiently discovers and extracts a compact representation of their Euclidean symmetries. These symmetries can be partial, approximate, or both. The method is based on matching simple local shape signatures in pairs and using these matches to accumulate evidence for symmetries in an appropriate transformation space. A clustering stage extracts potential significant symmetries of the object, followed by a verification step. Based on a statistical sampling analysis, we provide theoretical guarantees on the success rate of our algorithm. The extracted symmetry graph representation captures important highlevel information about the structure of a geometric model which in turn enables a large set of further processing operations, including shape compression, segmentation, consistent editing, symmetrization, indexing for retrieval, etc.
Restricted Delaunay triangulations and normal cycle
 SOCG'03
, 2003
"... We address the problem of curvature estimation from sampled smooth surfaces. Building upon the theory of normal cycles, we derive a definition of the curvature tensor for polyhedral surfaces. This definition consists in a very simple and new formula. When applied to a polyhedral approximation of a s ..."
Abstract

Cited by 147 (3 self)
 Add to MetaCart
(Show Context)
We address the problem of curvature estimation from sampled smooth surfaces. Building upon the theory of normal cycles, we derive a definition of the curvature tensor for polyhedral surfaces. This definition consists in a very simple and new formula. When applied to a polyhedral approximation of a smooth surface, it yields an efficient and reliable curvature estimation algorithm. Moreover, we bound the difference between the estimated curvature and the one of the smooth surface in the case of restricted Delaunay triangulations.
Estimating differential quantities using polynomial fitting of osculating jets
"... This paper addresses the pointwise estimation of differential properties of a smooth manifold S —a curve in the plane or a surface in 3D — assuming a point cloud sampled over S is provided. The method consists of fitting the local representation of the manifold using a jet, and either interpolation ..."
Abstract

Cited by 117 (7 self)
 Add to MetaCart
(Show Context)
This paper addresses the pointwise estimation of differential properties of a smooth manifold S —a curve in the plane or a surface in 3D — assuming a point cloud sampled over S is provided. The method consists of fitting the local representation of the manifold using a jet, and either interpolation or approximation. A jet is a truncated Taylor expansion, and the incentive for using jets is that they encode all local geometric quantities —such as normal, curvatures, extrema of curvature. On the way to using jets, the question of estimating differential properties is recasted into the more general framework of multivariate interpolation / approximation, a wellstudied problem in numerical analysis. On a theoretical perspective, we prove several convergence results when the samples get denser. For curves and surfaces, these results involve asymptotic estimates with convergence rates depending upon the degree of the jet used. For the particular case of curves, an error bound is also derived. To the best of our knowledge, these results are among the first ones providing accurate estimates for differential quantities of order three and more. On the algorithmic side, we solve the interpolation/approximation problem using Vandermonde systems. Experimental results for surfaces of R 3 are reported. These experiments illustrate the asymptotic convergence results, but also the robustness of the methods on general Computer Graphics models.