Results 1 -
3 of
3
Spectral Compressive Sensing
, 2010
"... Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals. A great many applications feature smooth or modulated signals that can be modeled as a linear combination of a small number of sinusoids; such signals are sparse in the frequency do ..."
Abstract
-
Cited by 39 (5 self)
- Add to MetaCart
Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals. A great many applications feature smooth or modulated signals that can be modeled as a linear combination of a small number of sinusoids; such signals are sparse in the frequency domain. In practical applications, the standard frequency domain signal representation is the discrete Fourier transform (DFT). Unfortunately, the DFT coefficients of a frequency-sparse signal are themselves sparse only in the contrived case where the sinusoid frequencies are integer multiples of the DFT’s fundamental frequency. As a result, practical DFT-based CS acquisition and recovery of smooth signals does not perform nearly as well as one might expect. In this paper, we develop a new spectral compressive sensing (SCS) theory for general frequency-sparse signals. The key ingredients are an over-sampled DFT frame, a signal model that inhibits closely spaced sinusoids, and classical sinusoid parameter estimation algorithms from the field of spectrum estimation. Using peridogram and eigen-analysis based spectrum estimates (e.g., MUSIC), our new SCS algorithms significantly outperform the current state-of-the-art CS algorithms while providing provable bounds on the number of measurements required for stable recovery.
Approved as to style and content by:
, 2014
"... This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has ..."
Abstract
- Add to MetaCart
This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has