Results 1 - 10
of
233
CIL: Intermediate language and tools for analysis and transformation of C programs
- In International Conference on Compiler Construction
, 2002
"... Abstract. This paper describes the CIntermediate Language: a highlevel representation along with a set of tools that permit easy analysis and source-to-source transformation of C programs. Compared to C, CIL has fewer constructs. It breaks down certain complicated constructs of C into simpler ones, ..."
Abstract
-
Cited by 533 (11 self)
- Add to MetaCart
(Show Context)
Abstract. This paper describes the CIntermediate Language: a highlevel representation along with a set of tools that permit easy analysis and source-to-source transformation of C programs. Compared to C, CIL has fewer constructs. It breaks down certain complicated constructs of C into simpler ones, and thus it works at a lower level than abstract-syntax trees. But CIL is also more high-level than typical intermediate languages (e.g., three-address code) designed for compilation. As a result, what we have is a representation that makes it easy to analyze and manipulate C programs, and emit them in a form that resembles the original source. Moreover, it comes with a front-end that translates to CIL not only ANSI C programs but also those using Microsoft C or GNU C extensions. We describe the structure of CIL with a focus on how it disambiguates those features of C that we found to be most confusing for program analysis and transformation. We also describe a whole-program merger based on structural type equality, allowing a complete project to be viewed as a single compilation unit. As a representative application of CIL, we show a transformation aimed at making code immune to stack-smashing attacks. We are currently using CIL as part of a system that analyzes and instruments C programs with run-time checks to ensure type safety. CIL has served us very well in this project, and we believe it can usefully be applied in other situations as well. 1
Vigilante: End-to-End Containment of Internet Worm Epidemics
, 2008
"... Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. ..."
Abstract
-
Cited by 304 (6 self)
- Add to MetaCart
Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. We propose Vigilante, a new end-to-end architecture to contain worms automatically that addresses these limitations. In Vigilante, hosts detect worms by instrumenting vulnerable programs to analyze infection attempts. We introduce dynamic data-flow analysis: a broad-coverage host-based algorithm that can detect unknown worms by tracking the flow of data from network messages and disallowing unsafe uses of this data. We also show how to integrate other host-based detection mechanisms into the Vigilante architecture. Upon detection, hosts generate self-certifying alerts (SCAs), a new type of security alert that can be inexpensively verified by any vulnerable host. Using SCAs, hosts can cooperate to contain an outbreak, without having to trust each other. Vigilante broadcasts SCAs over an overlay network that propagates alerts rapidly and resiliently. Hosts receiving an SCA protect themselves by generating filters with vulnerability condition slicing: an algorithm that performs dynamic analysis of the vulnerable program to identify control-flow conditions that lead
Dynamic Typing in a Statically Typed Language
"... Statically typed programming languages allow earlier error checking, better enforcement of disciplined programming styles, and generation of more e cient object code than languages where all type consistency checks are performed at run time. However, even in statically typed languages, there is ofte ..."
Abstract
-
Cited by 171 (4 self)
- Add to MetaCart
Statically typed programming languages allow earlier error checking, better enforcement of disciplined programming styles, and generation of more e cient object code than languages where all type consistency checks are performed at run time. However, even in statically typed languages, there is often the need to deal with data whose type cannot be determined at compile time. To handle such situations safely, we propose to add a type Dynamic whose values are pairs of a value v andatype tag T where v has the type denoted by T. Instances of Dynamic are built with an explicit tagging construct and inspected with a type safe typecase construct. This paper explores the syntax, operational semantics, and denotational semantics of a simple language including the type Dynamic. Wegive examples of how dynamically typed values can be used in programming. Then we discuss an operational semantics for our language and obtain a soundness theorem. We present two formulations of the denotational semantics of this language and relate them to the operational semantics. Finally,we consider the implications of polymorphism and some implementation issues.
The Programming Language Jigsaw: Mixins, Modularity And Multiple Inheritance
, 1992
"... This dissertation provides a framework for modularity in programming languages. In this framework, known as Jigsaw, inheritance is understood to be an essential linguistic mechanism for module manipulation. In Jigsaw, the roles of classes in existing languages are "unbundled," by providing ..."
Abstract
-
Cited by 162 (4 self)
- Add to MetaCart
(Show Context)
This dissertation provides a framework for modularity in programming languages. In this framework, known as Jigsaw, inheritance is understood to be an essential linguistic mechanism for module manipulation. In Jigsaw, the roles of classes in existing languages are "unbundled," by providing a suite of operators independently controlling such effects as combination, modification, encapsulation, name resolution, and sharing, all on the single notion of module. All module operators are forms of inheritance. Thus, inheritance is not in conflict with modularity in this system, but is indeed its foundation. This allows a previously unobtainable spectrum of features to be combined in a cohesive manner, including multiple inheritance, mixins, encapsulation and strong typing. Jigsaw has a rigorous semantics, based upon a denotational model of inheritance. Jigsaw provides a notion of modularity independent of a particular computational paradigm. Jigsaw can therefore be applied to a wide variet...
A Practical Soft Type System for Scheme
- In Proceedings of the 1994 ACM Conference on LISP and Functional Programming
, 1993
"... Soft type systems provide the benefits of static type checking for dynamically typed languages without rejecting untypable programs. A soft type checker infers types for variables and expressions and inserts explicit run-time checks to transform untypable programs to typable form. We describe a prac ..."
Abstract
-
Cited by 116 (4 self)
- Add to MetaCart
(Show Context)
Soft type systems provide the benefits of static type checking for dynamically typed languages without rejecting untypable programs. A soft type checker infers types for variables and expressions and inserts explicit run-time checks to transform untypable programs to typable form. We describe a practical soft type system for R4RS Scheme. Our type checker uses a representation for types that is expressive, easy to interpret, and supports efficient type inference. Soft Scheme supports all of R4RS Scheme, including procedures of fixed and variable arity, assignment, continuations, and top-level definitions. Our implementation is available by anonymous FTP. The first author was supported in part by the United States Department of Defense under a National Defense Science and Engineering Graduate Fellowship. y The second author was supported by NSF grant CCR-9122518 and the Texas Advanced Technology Program under grant 003604-014. 1 Introduction Dynamically typed languages like Scheme...
A Type-Theoretic Interpretation of Standard ML
- IN PROOF, LANGUAGE AND INTERACTION: ESSAYS IN HONOUR OF ROBIN MILNER
, 2000
"... ..."
Multi-Stage Programming: Its Theory and Applications
, 1999
"... MetaML is a statically typed functional programming language with special support for program generation. In addition to providing the standard features of contemporary programming languages such as Standard ML, MetaML provides three staging annotations. These staging annotations allow the construct ..."
Abstract
-
Cited by 95 (21 self)
- Add to MetaCart
MetaML is a statically typed functional programming language with special support for program generation. In addition to providing the standard features of contemporary programming languages such as Standard ML, MetaML provides three staging annotations. These staging annotations allow the construction, combination, and execution of object-programs. Our thesis is that MetaML's three staging annotations provide a useful, theoretically sound basis for building program generators. This dissertation reports on our study of MetaML's staging constructs, their use, their implementation, and their formal semantics. Our results include an extended example of where MetaML allows us to produce efficient programs, an explanation of why implementing these constructs in traditional ways can be challenging, two formulations of MetaML's semantics, a type system for MetaML, and a proposal for extending ...