Results 1  10
of
372
Geodesic Active Contours
, 1997
"... A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both in ..."
Abstract

Cited by 1422 (47 self)
 Add to MetaCart
(Show Context)
A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric is defined by the image content. This geodesic approach for object segmentation allows to connect classical “snakes ” based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved, allowing stable boundary detection when their gradients suffer from large variations, including gaps. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well. The scheme was implemented using an efficient algorithm for curve evolution. Experimental results of applying the scheme to real images including objects with holes and medical data imagery demonstrate its power. The results may be extended to 3D object segmentation as well.
Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 2002
"... This paper presents a novel variational framework to deal with frame partition problems in Computer Vision. This framework exploits boundary and regionbased segmentation modules under a curvebased optimization objective function. The task of supervised texture segmentation is considered to demonst ..."
Abstract

Cited by 309 (9 self)
 Add to MetaCart
This paper presents a novel variational framework to deal with frame partition problems in Computer Vision. This framework exploits boundary and regionbased segmentation modules under a curvebased optimization objective function. The task of supervised texture segmentation is considered to demonstrate the potentials of the proposed framework. The textured feature space is generated by filtering the given textured images using isotropic and anisotropic filters, and analyzing their responses as multicomponent conditional probability density functions. The texture segmentation is obtained by unifying region and boundarybased information as an improved Geodesic Active Contour Model. The defined objective function is minimized using a gradientdescent method where a level set approach is used to implement the obtained PDE. According to this PDE, the curve propagation towards the final solution is guided by boundary and regionbased segmentation forces, and is constrained by a regularity force. The level set implementation is performed using a fast front propagation algorithm where topological changes are naturally handled. The performance of our method is demonstrated on a variety of synthetic and real textured frames.
Global Minimum for Active Contour Models: A Minimal Path Approach
, 1997
"... A new boundary detection approach for shape modeling is presented. It detects the global minimum of an active contour model’s energy between two end points. Initialization is made easier and the curve is not trapped at a local minimum by spurious edges. We modify the “snake” energy by including the ..."
Abstract

Cited by 236 (70 self)
 Add to MetaCart
A new boundary detection approach for shape modeling is presented. It detects the global minimum of an active contour model’s energy between two end points. Initialization is made easier and the curve is not trapped at a local minimum by spurious edges. We modify the “snake” energy by including the internal regularization term in the external potential term. Our method is based on finding a path of minimal length in a Riemannian metric. We then make use of a new efficient numerical method to find this shortest path. It is shown that the proposed energy, though based only on a potential integrated along the curve, imposes a regularization effect like snakes. We explore the relation between the maximum curvature along the resulting contour and the potential generated from the image. The method is capable to close contours, given only one point on the objects’ boundary by using a topologybased saddle search routine. We show examples of our method applied to real aerial and medical images.
Level set methods: An overview and some recent results
 J. Comput. Phys
, 2001
"... The level set method was devised by Osher and Sethian in [64] as a simple and versatile method for computing and analyzing the motion of an interface Γ in two or three dimensions. Γ bounds a (possibly multiply connected) region Ω. The goal is to compute and analyze the subsequent motion of Γ under a ..."
Abstract

Cited by 222 (11 self)
 Add to MetaCart
(Show Context)
The level set method was devised by Osher and Sethian in [64] as a simple and versatile method for computing and analyzing the motion of an interface Γ in two or three dimensions. Γ bounds a (possibly multiply connected) region Ω. The goal is to compute and analyze the subsequent motion of Γ under a velocity field �v. This velocity can depend on position, time, the geometry of the interface and the external physics. The interface is captured for later time as the zero level set of a smooth (at least Lipschitz continuous) function ϕ(�x,t), i.e., Γ(t)={�xϕ(�x,t)=0}. ϕ is positive inside Ω, negative outside Ω andiszeroonΓ(t). Topological merging and breaking are well defined and easily performed. In this review article we discuss recent variants and extensions, including the motion of curves in three dimensions, the Dynamic Surface Extension method, fast methods for steady state problems, diffusion generated motion and the variational level set approach. We also give a user’s guide to the level set dictionary and technology, couple the method to a wide variety of problems involving external physics, such as compressible and incompressible (possibly reacting) flow, Stefan problems, kinetic crystal growth, epitaxial growth of thin films,
Simulating Water and Smoke with an Octree Data Structure
, 2004
"... We present a method for simulating water and smoke on an unrestricted octree data structure exploiting mesh refinement techniques to capture the small scale visual detail. We propose a new technique for discretizing the Poisson equation on this octree grid. The resulting linear system is symmetric ..."
Abstract

Cited by 211 (18 self)
 Add to MetaCart
We present a method for simulating water and smoke on an unrestricted octree data structure exploiting mesh refinement techniques to capture the small scale visual detail. We propose a new technique for discretizing the Poisson equation on this octree grid. The resulting linear system is symmetric positive definite enabling the use of fast solution methods such as preconditioned conjugate gradients, whereas the standard approximation to the Poisson equation on an octree grid results in a nonsymmetric linear system which is more computationally challenging to invert. The semiLagrangian characteristic tracing technique is used to advect the velocity, smoke density, and even the level set making implementation on an octree straightforward. In the case of smoke, we have multiple refinement criteria including object boundaries, optical depth, and vorticity concentration. In the case of water, we refine near the interface as determined by the zero isocontour of the level set function.
Shape Priors for Level Set Representations
 In ECCV
, 2002
"... Level Set Representations, the pioneering framework introduced by Osher and Sethian [14] is the most common choice for the implementation of variational frameworks in Computer Vision since it is implicit, intrinsic, parameter and topology free. However, many Computer vision applications refer to ..."
Abstract

Cited by 204 (15 self)
 Add to MetaCart
Level Set Representations, the pioneering framework introduced by Osher and Sethian [14] is the most common choice for the implementation of variational frameworks in Computer Vision since it is implicit, intrinsic, parameter and topology free. However, many Computer vision applications refer to entities with physical meanings that follow a shape form with a certain degree of variability. In this paper, we propose a novel energetic form to introduce shape constraints to level set representations. This formulation exploits all advantages of these representations resulting on a very elegant approach that can deal with a large number of parametric as well as continuous transformations. Furthermore, it can be combined with existing well known level setbased segmentation approaches leading to paradigms that can deal with noisy, occluded and missing or physically corrupted data. Encouraging experimental results are obtained using synthetic and real images.
A FAST SWEEPING METHOD FOR EIKONAL EQUATIONS
, 2004
"... In this paper a fast sweeping method for computing the numerical solution of Eikonal equations on a rectangular grid is presented. The method is an iterative method which uses upwind difference for discretization and uses GaussSeidel iterations with alternating sweeping ordering to solve the discr ..."
Abstract

Cited by 179 (6 self)
 Add to MetaCart
In this paper a fast sweeping method for computing the numerical solution of Eikonal equations on a rectangular grid is presented. The method is an iterative method which uses upwind difference for discretization and uses GaussSeidel iterations with alternating sweeping ordering to solve the discretized system. The crucial idea is that each sweeping ordering follows a family of characteristics of the corresponding Eikonal equation in a certain direction simultaneously. The method has an optimal complexity of O(N) for N grid points and is extremely simple to implement in any number of dimensions. Monotonicity and stability properties of the fast sweeping algorithm are proven. Convergence and error estimates of the algorithm for computing the distance function is studied in detail. It is shown that 2n GaussSeidel iterations is enough for the distance function in n dimensions. An estimation of the number of iterations for general Eikonal equations is also studied. Numerical examples are used to verify the analysis.
Continuum Crowds
 ACM Trans. Graph
, 2006
"... classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitt ..."
Abstract

Cited by 149 (0 self)
 Add to MetaCart
classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
ThreeDimensional Face Recognition
, 2005
"... An expressioninvariant 3D face recognition approach is presented. Our basic assumption is that facial expressions can be modelled as isometries of the facial surface. This allows to construct expressioninvariant representations of faces using the bendinginvariant canonical forms approach. The re ..."
Abstract

Cited by 145 (24 self)
 Add to MetaCart
An expressioninvariant 3D face recognition approach is presented. Our basic assumption is that facial expressions can be modelled as isometries of the facial surface. This allows to construct expressioninvariant representations of faces using the bendinginvariant canonical forms approach. The result is an efficient and accurate face recognition algorithm, robust to facial expressions, that can distinguish between identical twins (the first two authors). We demonstrate a prototype system based on the proposed algorithm and compare its performance to classical face recognition methods. The numerical methods employed by our approach do not require the facial surface explicitly. The surface gradients field, or the surface metric, are sufficient for constructing the expressioninvariant representation of any given face. It allows us to perform the 3D face recognition task while avoiding the surface reconstruction stage.