Results 1 - 10
of
2,897
Good features to track
, 1994
"... No feature-based vision system can work unless good features can be identified and tracked from frame to frame. Although tracking itself is by and large a solved problem, selecting features that can be tracked well and correspond to physical points in the world is still hard. We propose a feature se ..."
Abstract
-
Cited by 2050 (14 self)
- Add to MetaCart
(Show Context)
No feature-based vision system can work unless good features can be identified and tracked from frame to frame. Although tracking itself is by and large a solved problem, selecting features that can be tracked well and correspond to physical points in the world is still hard. We propose a feature selection criterion that is optimal by construction because it is based on how the tracker works, and a feature monitoring method that can detect occlusions, disocclusions, and features that do not correspond to points in the world. These methods are based on a new tracking algorithm that extends previous Newton-Raphson style search methods to work under affine image transformations. We test performance with several simulations and experiments.
A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
- In IEEE Workshop on Stereo and Multi-Baseline Vision,
, 2001
"... Abstract Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame ..."
Abstract
-
Cited by 1546 (22 self)
- Add to MetaCart
(Show Context)
Abstract Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods. Our taxonomy is designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms. We have also produced several new multi-frame stereo data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a comparative evaluation of a large set of today's best-performing stereo algorithms.
Performance of optical flow techniques
- INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1994
"... While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, ..."
Abstract
-
Cited by 1325 (32 self)
- Add to MetaCart
While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, matching, energy-based and phase-based methods. Our comparisons are primarily empirical, and concentrate on the accuracy, reliability and density of the velocity measurements; they show that performance can differ significantly among the techniques we implemented.
Shape and motion from image streams under orthography: a factorization method
- INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1992
"... Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an ill-conditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orth ..."
Abstract
-
Cited by 1094 (38 self)
- Add to MetaCart
Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an ill-conditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orthography without computing depth as an intermediate step. An image stream can be represented by the 2FxP measurement matrix of the image coordinates of P points tracked through F frames. We show that under orthographic projection this matrix is of rank 3. Based on this observation, the factorization method uses the singular-value decomposition technique to factor the measurement matrix into two matrices which represent object shape and camera rotation respectively. Two of the three translation components are computed in a preprocessing stage. The method can also handle and obtain a full solution from a partially filled-in measurement matrix that may result from occlusions or tracking failures. The method gives accurate results, and does not introduce smoothing in either shape or motion. We demonstrate this with a series of experiments on laboratory and outdoor image streams, with and without occlusions.
A Tutorial on Visual Servo Control
- IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION
, 1996
"... This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review ..."
Abstract
-
Cited by 839 (26 self)
- Add to MetaCart
(Show Context)
This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, position-based and image-based systems, are then discussed. Since any visual servo system must be capable of tracking image features in a sequence of images, we include an overview of feature-based and correlation-based methods for tracking. We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.
Plenoptic Modeling: An Image-Based Rendering System
, 1995
"... Image-based rendering is a powerful new approach for generating real-time photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for image-based ..."
Abstract
-
Cited by 760 (20 self)
- Add to MetaCart
Image-based rendering is a powerful new approach for generating real-time photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for image-based rendering paradigms, such as morphing and view interpolation. The plenoptic function is a parameterized function for describing everything that is visible from a given point in space. We present an image-based rendering system based on sampling, reconstructing, and resampling the plenoptic function. In addition, we introduce a novel visible surface algorithm and a geometric invariant for cylindrical projections that is equivalent to the epipolar constraint defined for planar projections.
Behavior recognition via sparse spatio-temporal features
- In VS-PETS
, 2005
"... A common trend in object recognition is to detect and leverage the use of sparse, informative feature points. The use of such features makes the problem more manageable while providing increased robustness to noise and pose variation. In this work we develop an extension of these ideas to the spatio ..."
Abstract
-
Cited by 717 (4 self)
- Add to MetaCart
(Show Context)
A common trend in object recognition is to detect and leverage the use of sparse, informative feature points. The use of such features makes the problem more manageable while providing increased robustness to noise and pose variation. In this work we develop an extension of these ideas to the spatio-temporal case. For this purpose, we show that the direct 3D counterparts to commonly used 2D interest point detectors are inadequate, and we propose an alternative. Anchoring off of these interest points, we devise a recognition algorithm based on spatio-temporally windowed data. We present recognition results on a variety of datasets including both human and rodent behavior. 1.
Lucas-Kanade 20 Years On: A Unifying Framework: Part 3
- International Journal of Computer Vision
, 2002
"... Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the most widely used techniques in computer vision. Applications range from optical flow, tracking, and layered motion, to mosaic construction, medical image registration, and face coding. Numerous algorithms hav ..."
Abstract
-
Cited by 706 (30 self)
- Add to MetaCart
Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the most widely used techniques in computer vision. Applications range from optical flow, tracking, and layered motion, to mosaic construction, medical image registration, and face coding. Numerous algorithms have been proposed and a variety of extensions have been made to the original formulation. We present an overview of image alignment, describing most of the algorithms in a consistent framework. We concentrate on the inverse compositional algorithm, an efficient algorithm that we recently proposed. We examine which of the extensions to the Lucas-Kanade algorithm can be used with the inverse compositional algorithm without any significant loss of efficiency, and which cannot. In this paper, Part 3 in a series of papers, we cover the extension of image alignment to allow linear appearance variation. We first consider linear appearance variation when the error function is the Euclidean L2 norm. We describe three different algorithms, the simultaneous, project out, and normalization inverse compositional algorithms, and empirically compare them. Afterwards we consider the combination of linear appearance variation with the robust error functions described in Part 2 of this series. We first derive robust versions of the simultaneous and normalization algorithms. Since both of these algorithms are very inefficient, as in Part 2 we derive efficient approximations based on spatial coherence. We end with an empirical evaluation of the robust algorithms.
Object Tracking: A Survey
, 2006
"... The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns o ..."
Abstract
-
Cited by 701 (7 self)
- Add to MetaCart
The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Detection and Tracking of Point Features
- International Journal of Computer Vision
, 1991
"... The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small inter-frame displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade i ..."
Abstract
-
Cited by 629 (2 self)
- Add to MetaCart
The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small inter-frame displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade in 1981. The method defines the measure of match between fixed-size feature windows in the past and current frame as the sum of squared intensity differences over the windows. The displacement is then defined as the one that minimizes this sum. For small motions, a linearization of the image intensities leads to a Newton-Raphson style minimization. In this report, after rederiving the method in a physically intuitive way, we answer the crucial question of how to choose the feature windows that are best suited for tracking. Our selection criterion is based directly on the definition of the tracking algorithm, and expresses how well a feature can be tracked. As a result, the criterion is optima...